Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.896
Filter
1.
Nature ; 629(8013): 869-877, 2024 May.
Article in English | MEDLINE | ID: mdl-38693267

ABSTRACT

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Subject(s)
Stem Cells , Animals , Mice , Humans , Stem Cells/cytology , Metaplasia , Regeneration , Female , Male , Respiratory Mucosa/cytology , Respiratory Mucosa/pathology , Epithelial Cells/cytology , Epithelial Cells/pathology , Tretinoin/metabolism , Tretinoin/pharmacology , Cell Plasticity , Vitamin A/metabolism , Vitamin A/pharmacology
2.
Front Immunol ; 15: 1362404, 2024.
Article in English | MEDLINE | ID: mdl-38745671

ABSTRACT

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Subject(s)
Asthma , Epithelial Cells , Matrix Metalloproteinase 9 , Oxidative Stress , Plant Extracts , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Animals , Oxidative Stress/drug effects , Mice , Humans , Plant Extracts/pharmacology , Matrix Metalloproteinase 9/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Disease Models, Animal , Tea/chemistry , Female , Signal Transduction/drug effects , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Cytokines/metabolism , Ovalbumin/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38469627

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Subject(s)
Asthma , Cytokines , Endoplasmic Reticulum Stress , Epithelial Cells , Thymic Stromal Lymphopoietin , Toll-Like Receptor 3 , Unfolded Protein Response , Humans , Cytokines/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Signal Transduction , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Bronchi/metabolism , Bronchi/pathology , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Cells, Cultured , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Biomaterials ; 308: 122546, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552367

ABSTRACT

Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear. Nowadays, animal models are not able to fully replicate clinical features of the human disease and the conventional in vitro models lack a stromal compartment undergoing fibrotic remodeling. To address this gap, we show the development of a 3D full-thickness model of CF with a human bronchial epithelium differentiated on a connective airway tissue. We demonstrated that the epithelial cells not only underwent mucociliary differentiation but also migrated in the connective tissue and formed gland-like structures. The presence of the connective tissue stimulated the pro-inflammatory behaviour of the epithelium, which activated the fibroblasts embedded into their own extracellular matrix (ECM). By varying the composition of the model with CF epithelial cells and a CF or healthy connective tissue, it was possible to replicate different moments of CF disease, as demonstrated by the differences in the transcriptome of the CF epithelium in the different conditions. The possibility to faithfully represent the crosstalk between epithelial and connective in CF through the full thickness model, along with inflammation and stromal activation, makes the model suitable to better understand mechanisms of disease genesis, progression, and response to therapy.


Subject(s)
Connective Tissue , Cystic Fibrosis , Epithelial Cells , Humans , Cystic Fibrosis/pathology , Cystic Fibrosis/metabolism , Connective Tissue/pathology , Connective Tissue/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Extracellular Matrix/metabolism , Cell Differentiation , Models, Biological , Fibroblasts/metabolism
5.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Article in English | MEDLINE | ID: mdl-38301257

ABSTRACT

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Subject(s)
COVID-19 , Growth Differentiation Factor 15 , Lung , Pseudomonas aeruginosa , SARS-CoV-2 , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Humans , Mice , Lung/metabolism , Lung/pathology , Lung/virology , Male , Pseudomonas Infections/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Female , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Disease Models, Animal
6.
Thorax ; 79(6): 524-537, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38286613

ABSTRACT

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.


Subject(s)
Epithelial Cells , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/etiology , Epithelial Cells/metabolism , Male , Middle Aged , Cells, Cultured , Bronchi/pathology , Female , Aged , Zinc Oxide , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Cilia , Nanoparticles , Cell Differentiation
7.
PLoS Comput Biol ; 19(8): e1011356, 2023 08.
Article in English | MEDLINE | ID: mdl-37566610

ABSTRACT

Human airway epithelium (HAE) represents the primary site of viral infection for SARS-CoV-2. Comprising different cell populations, a lot of research has been aimed at deciphering the major cell types and infection dynamics that determine disease progression and severity. However, the cell type-specific replication kinetics, as well as the contribution of cellular composition of the respiratory epithelium to infection and pathology are still not fully understood. Although experimental advances, including Air-liquid interface (ALI) cultures of reconstituted pseudostratified HAE, as well as lung organoid systems, allow the observation of infection dynamics under physiological conditions in unprecedented level of detail, disentangling and quantifying the contribution of individual processes and cells to these dynamics remains challenging. Here, we present how a combination of experimental data and mathematical modelling can be used to infer and address the influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics. Using a stepwise approach that integrates various experimental data on HAE culture systems with regard to tissue differentiation and infection dynamics, we develop an individual cell-based model that enables investigation of infection and regeneration dynamics within pseudostratified HAE. In addition, we present a novel method to quantify tissue integrity based on image data related to the standard measures of transepithelial electrical resistance measurements. Our analysis provides a first aim of quantitatively assessing cell type specific infection kinetics and shows how tissue composition and changes in regeneration capacity, as e.g. in smokers, can influence disease progression and pathology. Furthermore, we identified key measurements that still need to be assessed in order to improve inference of cell type specific infection kinetics and disease progression. Our approach provides a method that, in combination with additional experimental data, can be used to disentangle the complex dynamics of viral infection and immunity within human airway epithelial culture systems.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , Epithelial Cells/metabolism , SARS-CoV-2 , Cells, Cultured , Epithelium , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
8.
Cells ; 12(8)2023 04 07.
Article in English | MEDLINE | ID: mdl-37190013

ABSTRACT

The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator , Respiratory Mucosa/pathology , Inflammation/pathology , Hydrogen-Ion Concentration
9.
Int J Surg Pathol ; 31(7): 1414-1419, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36802923

ABSTRACT

Biphenotypic sinonasal sarcoma is a newly established tumor entity that is associated with distinct clinicopathological findings. Biphenotypic sinonasal sarcoma is a rare, low-grade spindle cell sarcoma that arises in middle-aged females, exclusively in the sinonasal tract. A fusion gene involving PAX3 is detected in most biphenotypic sinonasal sarcomas, which aids in its diagnosis. Here, we report a case of biphenotypic sinonasal sarcoma with its cytological findings. The patient was a 73-year-old woman who presented with purulent nasal discharge and dull pain in the left cheek area. Computed tomography showed a mass extending from the left nasal cavity to the left ethmoid sinus, the left frontal sinus, and the frontal skull base. She underwent a combined transcranial and endoscopic approach for en bloc resection with a safety margin. Histologically, spindle-shaped tumor cells have been thought to proliferate mainly in the subepithelial stroma. Here, nasal mucosal epithelial hyperplasia was noted, and the tumor had invaded the bone tissue accompanying the epithelial cells. Fluorescence in situ hybridization (FISH) analysis showed a PAX3 rearrangement, and next-generation sequencing identified a PAX3::MAML3 fusion. Based on FISH, split signals were observed not in respiratory cells but in stromal cells. This indicated that respiratory cells were non-neoplastic. In the diagnosis of biphenotypic sinonasal sarcoma, the inverted growth of the respiratory epithelium can be a diagnostic pitfall. FISH analysis using a PAX3 break-apart probe is helpful not only for an accurate diagnosis but also for detecting the true neoplastic cells.


Subject(s)
Paranasal Sinus Neoplasms , Sarcoma , Soft Tissue Neoplasms , Middle Aged , Female , Humans , Aged , In Situ Hybridization, Fluorescence , Paranasal Sinus Neoplasms/diagnosis , Paranasal Sinus Neoplasms/genetics , Paranasal Sinus Neoplasms/pathology , Sarcoma/pathology , Respiratory Mucosa/pathology , Bone and Bones/pathology
10.
J Oral Pathol Med ; 52(6): 548-553, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36504219

ABSTRACT

BACKGROUND: Respiratory epithelial adenomatoid hamartoma (REAH) is a sinonasal glandular overgrowth arising from the surface respiratory epithelium and invaginating into the stroma. Clinically, it appears as a polypoid mass that may cause nasal obstruction, anosmia, and epistaxis. The presence of cartilaginous and/or osseous areas move the lesion to a chondro-osseous respiratory epithelial (CORE) hamartoma subtype. Scattered small seromucinous glands may be observed between typical REAH glands and when it is the only feature, it represents seromucinous hamartoma (SH). The molecular pathogenesis of REAH has been poorly explored and remains unclear. Given that KRAS, BRAF, and EGFR mutations have been detected in a variety of sinonasal tumors, we aimed to assess these mutations in REAH and SH. METHODS: Ten REAH (including one CORE subtype), in addition to two SH cases, were Sanger sequenced by standard techniques. The targeted regions included KRAS exons 2-4 (encompassing hotspots codons 12, 13, 61, and 146), BRAF exons 11 and 15 (spanning the V600 codon), and EGFR exons 19 and 20. RESULTS: All REAH and SH samples showed wild-type sequences for KRAS, BRAF, and EGFR genes. CONCLUSION: Our results demonstrate a lack of KRAS, BRAF, or EGFR pathogenic variants with further evaluation of REAH and SH needed to elucidate driver genetic events.


Subject(s)
Adenoma , Hamartoma , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Respiratory Mucosa/pathology , Adenoma/pathology , Hamartoma/genetics , Hamartoma/diagnosis , Hamartoma/pathology , ErbB Receptors/genetics , Diagnosis, Differential
11.
Int Forum Allergy Rhinol ; 13(9): 1808-1811, 2023 09.
Article in English | MEDLINE | ID: mdl-36533304

ABSTRACT

KEY POINTS: Respiratory epithelial adenomatoid hamartoma (REAH) is easily confused with nasal polyps (NP). The typical manifestation of REAH on CT is the enlargement of bilateral olfactory clefts (OCs). The widening of the OCs in the CT scan is a biomarker for diagnosing REAH associated with NP.


Subject(s)
Adenoma , Hamartoma , Nasal Polyps , Humans , Nasal Polyps/diagnostic imaging , Nasal Polyps/pathology , Hamartoma/diagnostic imaging , Hamartoma/pathology , Tomography, X-Ray Computed , Respiratory Mucosa/diagnostic imaging , Respiratory Mucosa/pathology , Diagnosis, Differential
13.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L578-L592, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36068185

ABSTRACT

Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.


Subject(s)
Bronchiolitis Obliterans , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Humans , Diacetyl/toxicity , Airway Remodeling , Influenza A Virus, H3N2 Subtype , Bronchiolitis Obliterans/pathology , Respiratory Mucosa/pathology , Epithelial Cells/pathology , Lung/pathology , Influenza, Human/pathology
14.
Pathol Int ; 72(11): 541-549, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36102866

ABSTRACT

Respiratory epithelial adenomatoid hamartoma (REAH) is a benign lesion of the nasal cavity and paranasal sinuses. Here, we report the clinicopathological characteristics of REAH identified in 2065 cases with nasal/paranasal polypoid lesions treated with endoscopic sinus surgery (ESS) at our hospital from 2008 to 2021. Cases including the olfactory area were reviewed and 50 patients of REAH were identified pathologically (50/2065, 2.4%). The average age was 58.9 years old and the male/female ratio was 45/5. Grossly, REAH showed a whitish surface and elastic firm consistency. The histopathological characteristics included proliferation of small to medium-sized glands composed of ciliated respiratory epithelium containing goblet cells; thickening of the basement membrane compared to that for inverted papilloma (9.6 ± 2.4 vs. 1.3 ± 1.6 µm, p < 0.001); and no intra-epithelial neutrophilic infiltration. Among the REAH cases, 81% were associated with sinonasal inflammatory polyps. Many olfactory cleft polyps were REAH (38/98, 39%). The rate of REAH found in ESS in the last 7 years was higher than that in the first 7 years (3.17% vs. 1.62%, p = 0.032). Our results in Japanese patients are similar to those found in other countries, including male predominance. REAH is relatively common and that 39% of polyps taken from olfactory clefts are REAH.


Subject(s)
Adenoma , Hamartoma , Paranasal Sinuses , Humans , Male , Female , Middle Aged , Paranasal Sinuses/pathology , Paranasal Sinuses/surgery , Hamartoma/pathology , Endoscopy/methods , Respiratory Mucosa/pathology , Adenoma/pathology , Diagnosis, Differential
15.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954266

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Epithelium/metabolism , Humans , Leukocytes, Mononuclear/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology
16.
Expert Rev Respir Med ; 16(7): 737-748, 2022 07.
Article in English | MEDLINE | ID: mdl-35833354

ABSTRACT

INTRODUCTION: The airway epithelium is a key system within the lung. It acts as a physical barrier to inhaled factors, and can actively remove unwanted microbes and particles from the lung via the mucociliary escalator. On a physiological level, it senses the presence of pathogens and initiates innate immune responses to combat their effects. Hydration of the airways is also controlled by the epithelium. Within the cystic fibrosis (CF) lung, these properties are suboptimal and contribute to the pulmonary manifestations of CF. AREAS COVERED: In this review, we discuss how various host and microbial factors can contribute to airway epithelium dysfunction in the CF lung focusing on mechanisms relating to the mucociliary escalator and protease expression and function. We also explore how alterations in microRNA expression can impact the behavior of the airway epithelium. EXPERT OPINION: Notwithstanding the unprecedented benefits that CFTR modulator drugs now provide to the health of CF sufferers, it will be important to delve more deeply into additional mechanisms underpinning CF lung disease such as those illustrated here in an attempt to counteract these aberrant processes and further enhance quality of life for people with CF.


Subject(s)
Cystic Fibrosis , Respiratory Mucosa , Cystic Fibrosis/pathology , Humans , Lung , Respiratory Mucosa/pathology
17.
Signal Transduct Target Ther ; 7(1): 255, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896532

ABSTRACT

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl- is a crucial regulator of host defense, whereas the role of Cl- signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl- concentration ([Cl-]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl-]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl-]i. Our findings suggested that Cl- acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl- signaling pathway might be a novel therapeutic strategy for COVID-19.


Subject(s)
COVID-19 , Chlorine/metabolism , MicroRNAs , Animals , COVID-19/genetics , Humans , Inflammation/pathology , Mice , MicroRNAs/metabolism , Nucleocapsid Proteins , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , SARS-CoV-2
18.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35239513

ABSTRACT

The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac-/-) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.


Subject(s)
Mucin 5AC , Pulmonary Disease, Chronic Obstructive , Adenosine Triphosphate/metabolism , Animals , Disease Models, Animal , Humans , Inflammation/metabolism , Mice , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/genetics , Mucin-5B/metabolism , Mucus/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
19.
Respir Res ; 23(1): 31, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172835

ABSTRACT

BACKGROUND: Toll-interacting protein (Tollip) is one of the key negative regulators in host innate immunity. Genetic variation of Tollip has been associated with less Tollip expression and poor lung function in asthmatic patients, but little is known about the role of Tollip in human airway type 2 inflammatory response, a prominent feature in allergic asthma. OBJECTIVE: Our goal was to determine the role and underlying mechanisms of Tollip in human airway epithelial responses such as eotaxin to type 2 cytokine IL-13. METHODS: Tollip deficient primary human airway epithelial cells from 4 healthy donors were generated by the gene knockdown approach and stimulated with IL-13 to measure activation of transcription factor STAT3, and eotaxin-3, an eosinophilic chemokine. RESULTS: Following IL-13 treatment, Tollip deficient cells had significantly higher levels of STAT3 activation and eotaxin-3 than the scrambled control counterpart, which was reduced by a STAT3 inhibitor. Interaction between Tollip and STAT3 proteins was identified by co-immunoprecipitation. CONCLUSION: Our results, for the first time, suggest that Tollip inhibits excessive eotaxin-3 induction by IL-13, in part through the interaction and inhibition of STAT3. These findings lend evidence to the potential of a STAT3 inhibitor as a therapeutic target, especially for type 2 inflammation-high asthmatics with Tollip deficiency.


Subject(s)
Asthma/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Immunity, Innate , Intracellular Signaling Peptides and Proteins/metabolism , Respiratory Mucosa/metabolism , STAT3 Transcription Factor/metabolism , Adult , Aged , Asthma/immunology , Asthma/pathology , Cells, Cultured , Epithelial Cells/pathology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology
20.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046051

ABSTRACT

Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mutation , Respiratory Mucosa/metabolism , Acinar Cells/metabolism , Animals , Biomarkers , Cystic Fibrosis/etiology , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Genetic Predisposition to Disease , Mucins/metabolism , Mucociliary Clearance , Mucus/metabolism , Respiratory Mucosa/pathology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...