Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.214
Filter
1.
PLoS One ; 19(6): e0305031, 2024.
Article in English | MEDLINE | ID: mdl-38843254

ABSTRACT

Heart rate variability (HRV) is a frequently used indicator of autonomic responses to various stimuli in horses. This study aimed to investigate HRV variables in horses undergoing cold (n = 25) or hot (n = 26) shoeing. Multiple HRV variables were measured and compared between horses undergoing cold and hot shoeing, including the time domain, frequency domain, and nonlinear variables pre-shoeing, during shoeing, and at 30-minute intervals for 120 minutes post-shoeing. The shoeing method interacted with time to change the HRV variables standard deviation of RR intervals (SDNN), root mean square of successive RR interval differences (RMSSD), very-low-frequency band, low-frequency band (LF), the LF to high-frequency band ratio, respiratory rate, total power, standard deviation perpendicular to the line of identity (SD1), and standard deviation along the line of identity (SD2). SDNN, RMSSD, and total power only increased 30 minutes after hot shoeing (all p < 0.05). Triangular interpolation of normal-to-normal intervals (TINN) and the HRV triangular index increased during and up to 120 minutes after hot shoeing (p < 0.05-0.001). TINN increased only during cold shoeing (p < 0.05). LF increased 30 and 60 minutes after hot shoeing (both p < 0.05). SD1 and SD2 also increased 30 minutes after hot shoeing (both p < 0.05). SDNN, TINN, HRV triangular index, LF, total power, and SD2 were higher in hot-shoed than cold-shoed horses throughout the 120 minutes post-shoeing. Differences in HRV were found, indicating increased sympathovagal activity in hot shoed horses compared to cold shoed horses.


Subject(s)
Cold Temperature , Heart Rate , Hot Temperature , Animals , Horses/physiology , Heart Rate/physiology , Male , Female , Respiratory Rate/physiology , Shoes
2.
PLoS One ; 19(5): e0302758, 2024.
Article in English | MEDLINE | ID: mdl-38748652

ABSTRACT

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Subject(s)
Diving , Oxygen Consumption , Respiratory Rate , Whale, Killer , Animals , Whale, Killer/physiology , Whale, Killer/metabolism , Male , Respiratory Rate/physiology , Female , Oxygen Consumption/physiology , Diving/physiology , Energy Metabolism/physiology , Respiration , Feeding Behavior/physiology
3.
Narra J ; 4(1): e574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798847

ABSTRACT

Respiratory droplets, naturally produced during expiration, can transmit pathogens from infected individuals. Wearing a face mask is crucial to prevent such transmission, yet the perception of dyspnea and uncomfortable breathing remains a common concern, particularly during epidemics. The aim of this study was to investigate the impact of face mask use on the perception of dyspnea, cardiopulmonary parameters, and facial temperature during physical activity. A randomized crossover study was conducted on healthy adults at a physiology laboratory located in the Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia, in November 2022. Participants underwent five stages of physical exercise tests based on the Bruce Protocol under three conditions: without any face mask (control), wearing a surgical mask, and an N95 mask, forming the study's main groups. Dyspnea perception (measured by the Modified Borg Dyspnea Scale), cardiopulmonary parameters (heart rate, oxygen saturation, respiratory rate, blood pressure, and mean arterial pressure) and facial temperature were measured before the exercise test (pre-workout), at the end of stage 1, 2, 3, 4, 5, and after the whole exercise test (post-workout). A two-way repeated measures ANOVA was conducted, considering two factors: the type of mask (control, surgical mask, N95 mask) and the various stages of the exercise test. A total of 36 healthy adults were included in the study. We found that dyspnea perception was much worse in the N95 mask group, particularly during vigorous exercise. There was no significant difference between groups in cardiopulmonary parameters. However, participants wearing N95 had a greater supralabial temperature than those wearing surgical masks or no mask at all. It is recommended to undertake a more in-depth evaluation of cardiopulmonary physiological measures.


Subject(s)
Cross-Over Studies , Dyspnea , Heart Rate , Masks , Humans , Masks/adverse effects , Dyspnea/prevention & control , Male , Female , Adult , Heart Rate/physiology , Body Temperature , Indonesia , Healthy Volunteers , Perception , Exercise Test , Young Adult , Exercise/physiology , Blood Pressure/physiology , Respiratory Rate/physiology
4.
Comput Biol Med ; 173: 108335, 2024 May.
Article in English | MEDLINE | ID: mdl-38564855

ABSTRACT

In recent decade, wearable digital devices have shown potentials for the discovery of novel biomarkers of humans' physiology and behavior. Heart rate (HR) and respiration rate (RR) are most crucial bio-signals in humans' digital phenotyping research. HR is a continuous and non-invasive proxy to autonomic nervous system and ample evidence pinpoints the critical role of respiratory modulation of cardiac function. In the present study, we recorded longitudinal (7 days, 4.63 ± 1.52) HR and RR of 89 freely behaving human subjects (Female: 39, age 57.28 ± 5.67, Male: 50, age 58.48 ± 6.32) and analyzed their dynamics using linear models and information theoretic measures. While HR's linear and nonlinear characteristics were expressed within the plane of the HR-RR directed flow of information (HR→RR - RR→HR), their dynamics were determined by its RR→HR axis. More importantly, RR→HR quantified the effect of alcohol consumption on individuals' cardiorespiratory function independent of their consumed amount of alcohol, thereby signifying the presence of this habit in their daily life activities. The present findings provided evidence for the critical role of the respiratory modulation of HR, which was previously only studied in non-human animals. These results can contribute to humans' phenotyping research by presenting RR→HR as a digital diagnosis/prognosis marker of humans' cardiorespiratory pathology.


Subject(s)
Autonomic Nervous System , Respiratory Rate , Humans , Male , Female , Respiratory Rate/physiology , Heart Rate/physiology , Autonomic Nervous System/physiology , Linear Models
5.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676065

ABSTRACT

This paper proposes a new approach for wide angle monitoring of vital signs in smart home applications. The person is tracked using an indoor radar. Upon detecting the person to be static, the radar automatically focuses its beam on that location, and subsequently breathing and heart rates are extracted from the reflected signals using continuous wavelet transform (CWT) analysis. In this way, leveraging the radar's on-chip processor enables real-time monitoring of vital signs across varying angles. In our experiment, we employ a commercial multi-input multi-output (MIMO) millimeter-wave FMCW radar to monitor vital signs within a range of 1.15 to 2.3 m and an angular span of -44.8 to +44.8 deg. In the Bland-Altman plot, the measured results indicate the average difference of -1.5 and 0.06 beats per minute (BPM) relative to the reference for heart rate and breathing rate, respectively.


Subject(s)
Heart Rate , Radar , Heart Rate/physiology , Humans , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Respiration , Respiratory Rate/physiology , Wavelet Analysis , Signal Processing, Computer-Assisted , Algorithms
6.
Pediatrics ; 153(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38618659

ABSTRACT

BACKGROUND AND OBJECTIVES: Time to clinical stability (TCS) is a commonly used outcome in adults with community-acquired pneumonia (CAP), yet few studies have evaluated TCS in children. Our objective was to determine the association between TCS and disease severity in children with suspected CAP, as well as factors associated with reaching early stability. METHODS: This is a prospective cohort study of children (aged 3 months to 18 years) hospitalized with suspected CAP. TCS parameters included temperature, heart rate, respiratory rate, and hypoxemia with the use of supplemental oxygen. TCS was defined as time from admission to parameter normalization. The association of TCS with severity and clinical factors associated with earlier TCS were evaluated. RESULTS: Of 571 children, 187 (32.7%) had at least 1 abnormal parameter at discharge, and none had ≥3 abnormal discharge parameters. A greater proportion of infants (90 [93%]) had all 4 parameters stable at discharge compared with 12- to 18-year-old youths (21 [49%]). The median TCS for each parameter was <24 hours. Younger age, absence of vomiting, diffusely decreased breath sounds, and normal capillary refill were associated with earlier TCS. Children who did not reach stability were not more likely to revisit after discharge. CONCLUSIONS: A TCS outcome consisting of physiologic variables may be useful for objectively assessing disease recovery and clinical readiness for discharge among children hospitalized with CAP. TCS may decrease length of stay if implemented to guide discharge decisions. Clinicians can consider factors associated with earlier TCS for management decisions.


Subject(s)
Community-Acquired Infections , Pneumonia , Humans , Child , Child, Preschool , Adolescent , Male , Female , Prospective Studies , Infant , Pneumonia/diagnosis , Time Factors , Severity of Illness Index , Respiratory Rate/physiology , Hospitalization , Cohort Studies , Hypoxia , Heart Rate/physiology
7.
Physiol Meas ; 45(5)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38588677

ABSTRACT

Objective. The respiratory rate (RR) is considered one of the most informative vital signals. A well-validated standard for RR measurement in mechanically ventilated patient is capnography; a noninvasive technique for expiratory CO2measurements. Reliable RR measurements in spontaneously breathing patients remains a challenge as continuous mainstream capnography measurements are not available. This study aimed to assess the accuracy of RR measurement using electrical impedance tomography (EIT) in healthy volunteers and intensive care unit (ICU) patients on mechanical ventilation and spontaneously breathing post-extubation. Comparator methods included RR derived from both capnography and bioimpedance electrocardiogram (ECG) measurements.Approach. Twenty healthy volunteers wore an EIT belt and ECG electrodes while breathing through a capnometer within a 10-40 breaths per minute (BPM) range. Nineteen ICU patients underwent similar measurements during pressure support ventilation and spontaneously breathing after extubation from mechanical ventilation. Stable periods with regular breathing and no artefacts were selected, and agreement between measurement methods was assessed using Bland-Altman analysis for repeated measurements.Main result. Bland-Altman analysis revealed a bias less than 0.2 BPM, with tight limits of agreement (LOA) ±1.5 BPM in healthy volunteers and ventilated ICU patients when comparing EIT to capnography. Spontaneously breathing ICU patients had wider LOA (±2.5 BPM) when comparing EIT to ECG bioimpedance, but gold standard comparison was unavailable. RR measurements were stable for 91% of the time for capnography, 68% for EIT, and 64% of the ECG bioimpedance signals. After extubation, the percentage of stable periods decreased to 48% for EIT signals and to 55% for ECG bioimpedance.Significance. In periods of stable breathing, EIT demonstrated excellent RR measurement accuracy in healthy volunteers and ICU patients. However, stability of both EIT and ECG bioimpedance RR measurements declined in spontaneously breathing patients to approximately 50% of the time.


Subject(s)
Electric Impedance , Healthy Volunteers , Intensive Care Units , Respiratory Rate , Tomography , Humans , Tomography/methods , Male , Female , Monitoring, Physiologic/methods , Adult , Middle Aged , Respiratory Rate/physiology , Respiration, Artificial , Aged , Capnography
8.
Arch Pediatr ; 31(4): 250-255, 2024 May.
Article in English | MEDLINE | ID: mdl-38538471

ABSTRACT

INTRODUCTION: The wrapping of the newborn in an orthopedic tubular mesh, simulating a cocoon, can allow the infant to regain the feeling of security and stability experienced in the uterus given that the movement of one of the parts of the body exerts tactile and pressure variation in others. OBJECTIVE: We aimed to evaluate the influence of an orthopedic tubular mesh, simulating a cocoon, in therapeutic positioning, on the variables of the autonomous, motor, and regulatory systems of preterm newborns. METHODS: A controlled and randomized clinical trial was conducted with preterm newborns positioned in dorsal decubitus and divided into two groups: (a) cocoon - newborns covered with an orthopedic tubular mesh, and (b) control - newborns positioned according to the sector's routine and without the use of an orthopedic mesh. During the follow-up, each newborn was placed in the position for 30 min and was recorded for a total of 2 min, once at the beginning and again at the end of the observation period. Variables related to the autonomous system (heart rate, respiratory rate, and peripheral oxygen saturation), motor system (general movements), and regulatory system (Neonatal Infant Pain Scale) were evaluated before and after the intervention. The videos were evaluated by a researcher blind to the purpose of the study, and the resulting data were analyzed using SPSS. RESULTS: Of the 40 preterm newborns evaluated (32.5 ± 1.83 weeks), 21 were female, and 20 were allocated to the cocoon group. The variables related to the autonomous, motor, and regulatory systems remained unchanged following the positioning in the cocoon, as compared to the typical positioning employed in the neonatal unit. CONCLUSION: The simulation of a cocoon, utilizing an orthopedic tubular mesh, when applied to preterm newborns admitted to a neonatal intensive care unit can contribute to maintaining low levels of stress, without altering variables of the autonomous, motor, and regulatory systems.


Subject(s)
Infant, Premature , Humans , Infant, Newborn , Infant, Premature/physiology , Female , Male , Heart Rate/physiology , Autonomic Nervous System/physiology , Autonomic Nervous System/physiopathology , Patient Positioning/methods , Respiratory Rate/physiology , Pain Measurement
9.
Neuron ; 112(11): 1764-1777.e5, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38537641

ABSTRACT

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.


Subject(s)
Behavior, Animal , Optogenetics , Wireless Technology , Animals , Behavior, Animal/physiology , Optogenetics/methods , Mice , Heart Rate/physiology , Male , Prostheses and Implants , Respiratory Rate/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Algorithms
10.
IEEE J Biomed Health Inform ; 28(5): 2636-2649, 2024 May.
Article in English | MEDLINE | ID: mdl-38381641

ABSTRACT

Monitoring vital signs is a key part of standard medical care for cancer patients. However, the traditional methods have instability especially when big fluctuations of signals happen, while the deep-learning-based methods lack pertinence to the sensors. A dual-path micro-bend optical fiber sensor and a targeted model based on the Divided-Frequency-CNN (DFC) are developed in this paper to measure the heart rate (HR) and respiratory rate (RR). For each path, features of frequency division based on the mechanism of signal periodicity cooperate with the operation of stable phase extraction to reduce the interference of body movements for monitoring. Then, the DFC model is designed to learn the inner information from the features robustly. Lastly, a weighted strategy is used to estimate the HR and RR via dual paths to increase the anti-interference for errors from one source. The experiments were carried out on the actual clinical data of cancer patients by a hospital. The results show that the proposed method has good performance in error (3.51 (4.51 %) and 2.53 (3.28 %) beats per minute (bpm) for cancer patients with pain and without pain respectively), relevance, and consistency with the values from hospital equipment. Besides, the proposed method significantly improved the ability in the report time interval (30 to 9 min), and mean / confidential interval (3.60/[-22.61,29.81] to -0.64 / [-9.21,7.92] for patients with pain and 1.87 / [-5.49,9.23] to -0.16 / [-6.21,5.89] for patients without pain) compared with our previous work.


Subject(s)
Heart Rate , Neoplasms , Respiratory Rate , Signal Processing, Computer-Assisted , Vital Signs , Humans , Neoplasms/physiopathology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Vital Signs/physiology , Heart Rate/physiology , Respiratory Rate/physiology , Neural Networks, Computer , Male , Deep Learning , Female , Middle Aged , Adult
11.
Cyberpsychol Behav Soc Netw ; 27(4): 253-260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377602

ABSTRACT

Policing is a highly demanding and stressful profession. Virtual reality (VR) has emerged as a promising tool for enhancing stress management programs, including for police officers. The use of VR in combination with biosensors enables measurement of psychophysiological responses such as peripheral temperature (PT) and skin conductance level (SCL). This study investigated the psychophysiological responses of police officers exposed to a VR scenario simulating a car accident. The study included a total of 63 police officers from the Public Security Police. Participants were divided into three groups based on their police divisions: the Investigation Brigade of Traffic Accidents, the Traffic Surveillance Squad (TSS), and a control group from the Lisbon Metropolitan Command. The results indicated that the VR environment effectively induced psychophysiological arousal, particularly in less experienced officers (TSS), that is, there were significant group differences in mean SCL and PT, showing this group with higher SCL and lower PT during the VR exposure. These results support the potential of VR as a stress inoculation strategy for training police officers and highlight the complex nature of stress responses that are influenced by individual factors and psychopathology.


Subject(s)
Stress, Psychological , Virtual Reality , Humans , Male , Female , Young Adult , Adult , Middle Aged , Computer Simulation , Psychophysiology , Accidents, Traffic/psychology , Sociodemographic Factors , Galvanic Skin Response/physiology , Heart Rate/physiology , Respiratory Rate/physiology , Body Temperature/physiology
12.
Pediatr Res ; 95(1): 52-58, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37660179

ABSTRACT

Preterm infants often experience breathing instability and a hampered lung function. Therefore, these infants receive cardiorespiratory monitoring and respiratory support. However, the current respiratory monitoring technique may be unreliable for especially obstructive apnea detection and classification and it does not provide insight in breathing effort. The latter makes the selection of the adequate mode and level of respiratory support difficult. Electromyography of the diaphragm (dEMG) has the potential of monitoring heart rate (HR) and respiratory rate (RR), and it provides additional information on breathing effort. This review summarizes the available evidence on the clinical potential of dEMG to provide cardiorespiratory monitoring, to synchronize patient-ventilator interaction, and to optimize the mode and level of respiratory support in the individual newborn infant. We also try to identify gaps in knowledge and future developments needed to ensure widespread implementation in clinical practice. IMPACT: Preterm infants require cardiorespiratory monitoring and respiratory support due to breathing instability and a hampered lung function. The current respiratory monitoring technique may provide unreliable measurements and does not provide insight in breathing effort, which makes the selection of the optimal respiratory support settings difficult. Measuring diaphragm activity could improve cardiorespiratory monitoring by providing insight in breathing effort and could potentially have an important role in individualizing respiratory support in newborn infants.


Subject(s)
Diaphragm , Infant, Premature , Infant , Humans , Infant, Newborn , Diaphragm/physiology , Electromyography , Prospective Studies , Respiratory Rate/physiology
13.
Appl Psychophysiol Biofeedback ; 49(1): 133-143, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38063977

ABSTRACT

Breathing techniques, particularly slow-paced breathing (SPB), have gained popularity among athletes due to their potential to enhance performance by increasing cardiac vagal activity (CVA), which in turn can help manage stress and regulate emotions. However, it is still unclear whether the frequency of SPB affects its effectiveness in increasing CVA. Therefore, this study aimed to investigate the effects of a brief SPB intervention (i.e., 5 min) on CVA using heart rate variability (HRV) measurement as an index. A total of 75 athletes (22 female; Mage = 22.32; age range = 19-31) participated in the study, attending one lab session where they performed six breathing exercises, including SPB at different frequencies (5 cycles per minute (cpm), 5.5 cpm, 6 cpm, 6.5 cpm, 7 cpm), and a control condition of spontaneous breathing. The study found that CVA was significantly higher in all SPB conditions compared to the control condition, as indexed by both root mean square of the successive differences (RMSSD) and low-frequency HRV (LF-HRVms2). Interestingly, LF-HRVms2 was more sensitive in differentiating the respiratory frequencies than RMSSD. These results suggest that SPB at a range of 5 cpm to 7 cpm can be an effective method to increase CVA and potentially improve stress management and emotion regulation in athletes. This short SPB exercise can be a simple yet useful tool for athletes to use during competitive scenarios and short breaks in competitions. Overall, these findings highlight the potential benefits of incorporating SPB into athletes' training and competition routines.


Subject(s)
Respiratory Rate , Vagus Nerve , Humans , Female , Young Adult , Adult , Heart Rate/physiology , Respiratory Rate/physiology , Vagus Nerve/physiology , Breathing Exercises , Heart , Respiration
14.
Pediatr Pulmonol ; 58(12): 3574-3581, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37795597

ABSTRACT

INTRODUCTION: We determined if the heart rate (HR) monitoring performance of a wireless and nonadhesive belt is non-inferior compared to standard electrocardiography (ECG). Secondary objective was to explore the belt's respiratory rate (RR) monitoring performance compared to chest impedance (CI). METHOD: In this multicenter non-inferiority trial, preterm and term infants were simultaneously monitored with the belt and conventional ECG/CI for 24 h. HR monitoring performance was estimated with the HR difference and ability to detect cardiac events compared to the ECG, and the incidence of HR-data loss per second. These estimations were statistically compared to prespecified margins to confirm equivalence/non-inferiority. Exploratory RR analyses estimated the RR trend difference and ability to detect apnea/tachypnea compared to CI, and the incidence of RR-data loss per second. RESULTS: Thirty-nine infants were included. HR monitoring with the belt was non-inferior to the ECG with a mean HR difference of 0.03 beats per minute (bpm) (standard error [SE] = 0.02) (95% limits of agreement [LoA]: [-5 to 5] bpm) (p < 0.001). Second, sensitivity and positive predictive value (PPV) for cardiac event detection were 94.0% (SE = 0.5%) and 92.6% (SE = 0.6%), respectively (p ≤ 0.001). Third, the incidence of HR-data loss was 2.1% (SE = 0.4%) per second (p < 0.05). The exploratory analyses of RR showed moderate trend agreement with a mean RR-difference of 3.7 breaths/min (SE = 0.8) (LoA: [-12 to 19] breaths/min), but low sensitivities and PPV's for apnea/tachypnea detection. The incidence of RR-data loss was 2.2% (SE = 0.4%) per second. CONCLUSION: The nonadhesive, wireless belt showed non-inferior HR monitoring and a moderate agreement in RR trend compared to ECG/CI. Future research on apnea/tachypnea detection is required.


Subject(s)
Apnea , Diaphragm , Humans , Infant , Infant, Newborn , Apnea/diagnosis , Apnea/epidemiology , Diaphragm/physiology , Monitoring, Physiologic , Respiratory Rate/physiology , Tachypnea
15.
Sensors (Basel) ; 23(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177701

ABSTRACT

Cardiac coherence is a state achieved when one controls their breathing rate during the so-called resonance frequency breathing. This maneuver allows respiratory-driven vagal modulations of the heart rate to superimpose with sympathetic modulations occurring at 0.1 Hz, thereby maximizing autonomous power in heart-to-brain connections. These stimulations have been shown to improve vagal regulations, which results in obvious benefits for both mental and organic health. Here, we present a device that is able to deliver visual and haptic cues, as well as HRV biofeedback information to guide the user in maintaining a 0.1 Hz breathing frequency. We explored the effectiveness of cardiac coherence in three guidance conditions: visual, haptic and visuo-haptic breathing. Thirty-two healthy students (sixteen males) were divided into three groups that experienced five minutes of either visual, haptic and visuo-haptic guided breathing at 0.1 Hz. The effects of guidance on the (adequate) breathing pattern and heart rate variability (HRV) were analyzed. The interest of introducing haptic breathing to achieve cardiac coherence was shown in the haptic and visuo-haptic groups. Especially, the P0.1 index, which indicates how the autonomous power is 'concentrated' at 0.1 Hz in the PSD spectrum, demonstrated the superiority of combining haptic with visual sensory inputs in potentiating cardiac coherence (0.55 ± 0.20 for visuo-haptic vs. 0.28 ± 0.14 for visual only guidance; p < 0.05) haptic-induced effectiveness could be an asset for a more efficient and time-saving practice, allowing improved health and well-being even under tight time constraints.


Subject(s)
Haptic Technology , Respiration , Male , Humans , Heart , Respiratory Rate/physiology , Vagus Nerve/physiology , Heart Rate/physiology
16.
Sensors (Basel) ; 23(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050444

ABSTRACT

The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Humans , Respiratory Rate/physiology , Heart Rate/physiology , Photoplethysmography/methods
17.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Article in English | MEDLINE | ID: mdl-37119434

ABSTRACT

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Subject(s)
Electrocorticography , Epilepsy , Respiratory Rate , Respiration , Respiratory Rate/physiology , Amygdala , Temporal Lobe , Thalamus , Prospective Studies
18.
Eur J Pediatr ; 182(5): 2205-2214, 2023 May.
Article in English | MEDLINE | ID: mdl-36867236

ABSTRACT

Clinical algorithms used in the assessment of febrile children in the Paediatric Emergency Departments are commonly based on threshold values for vital signs, which in children with fever are often outside the normal range. Our aim was to assess the diagnostic value of heart and respiratory rate for serious bacterial infection (SBI) in children after temperature lowering following administration of antipyretics. A prospective cohort of children presenting with fever between June 2014 and March 2015 at the Paediatric Emergency Department of a large teaching hospital in London, UK, was performed. Seven hundred forty children aged 1 month-16 years presenting with a fever and ≥ 1 warning signs of SBI given antipyretics were included. Tachycardia or tachypnoea were defined by different threshold values: (a) APLS threshold values, (b) age-specific and temperature-adjusted centiles charts and (c) relative difference in z-score. SBI was defined by a composite reference standard (cultures from a sterile site, microbiology and virology results, radiological abnormalities, expert panel). Persistent tachypnoea after body temperature lowering was an important predictor of SBI (OR 1.92, 95% CI 1.15, 3.30). This effect was only observed for pneumonia but not other SBIs. Threshold values for tachypnoea > 97th centile at repeat measurement achieved high specificity (0.95 (0.93, 0.96)) and positive likelihood ratios (LR + 3.25 (1.73, 6.11)) and may be useful for ruling in SBI, specifically pneumonia. Persistent tachycardia was not an independent predictor of SBI and had limited value as a diagnostic test.  Conclusion: Among children given antipyretics, tachypnoea at repeat measurement had some value in predicting SBI and was useful to rule in pneumonia. The diagnostic value of tachycardia was poor. Overreliance on heart rate as a diagnostic feature following body temperature lowering may not be justified to facilitate safe discharge. What is Known: • Abnormal vital signs at triage have limited value as a diagnostic test to identify children with SBI, and fever alters the specificity of commonly used threshold values for vital signs. • The observed temperature response after antipyretics is not a clinically useful indicator to differentiate the cause of febrile illness. What is New: • Persistent tachycardia following reduction in body temperature was not associated with an increased risk of SBI and of poor value as a diagnostic test, whilst persistent tachypnoea may indicate the presence of pneumonia.


Subject(s)
Antipyretics , Bacterial Infections , Pneumonia , Child , Humans , Infant , Heart Rate/physiology , Respiratory Rate/physiology , Prospective Studies , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Bacterial Infections/complications , Tachypnea/complications , Fever/complications , Emergency Service, Hospital
19.
Appl Psychophysiol Biofeedback ; 48(3): 275-297, 2023 09.
Article in English | MEDLINE | ID: mdl-36917418

ABSTRACT

Heart Rate Variability Biofeedback (HRVB) has been widely used to improve cardiovascular health and well-being. HRVB is based on breathing at an individual's resonance frequency, which stimulates respiratory sinus arrhythmia (RSA) and the baroreflex. There is, however, no methodological consensus on how to apply HRVB, while details about the protocol used are often not well reported. Thus, the objectives of this systematic review are to describe the different HRVB protocols and detect methodological concerns. PsycINFO, CINALH, Medline and Web of Science were searched between 2000 and April 2021. Data extraction and quality assessment were based on PRISMA guidelines. A total of 143 studies were finally included from any scientific field and any type of sample. Three protocols for HRVB were found: (i) "Optimal RF" (n = 37), each participant breathes at their previously detected RF; (ii) "Individual RF" (n = 48), each participant follows a biofeedback device that shows the optimal breathing rate based on cardiovascular data in real time, and (iii) "Preset-pace RF" (n = 51), all participants breathe at the same rate rate, usually 6 breaths/minute. In addition, we found several methodological differences for applying HRVB in terms of number of weeks, duration of breathing or combination of laboratory and home sessions. Remarkably, almost 2/3 of the studies did not report enough information to replicate the HRVB protocol in terms of breathing duration, inhalation/exhalation ratio, breathing control or body position. Methodological guidelines and a checklist are proposed to enhance the methodological quality of future HRVB studies and increase the information reported.


Subject(s)
Biofeedback, Psychology , Respiratory Sinus Arrhythmia , Humans , Heart Rate/physiology , Biofeedback, Psychology/methods , Exhalation , Respiratory Rate/physiology
20.
Sci Rep ; 13(1): 2220, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755066

ABSTRACT

Little is known on the effects of respiratory patterns on baroreflex function in heart failure (HF). Patients with HF (n = 30, age 61.6 ± 10 years, mean ± SD) and healthy controls (CNT, n = 10, age 58.9 ± 5.6 years) having their R-R interval (RRI, EKG), systolic arterial blood pressure (SBP, Finapres) and respiratory signal (RSP, Respitrace) monitored, were subjected to three recording sessions: free-breathing, fast- (≥ 12 bpm) and slow- (6 bpm) paced breathing. Baroreflex sensitivity (BRS) and power spectra of RRI, SBP, and RSP signals were calculated. During free-breathing, compared to CNT, HF patients showed a significantly greater modulation of respiratory volumes in the very-low-frequency (< 0.04 Hz) range and their BRS was not significantly different from that of CNT. During fast-paced breathing, when very-low-frequency modulations of respiration were reduced, BRS of HF patients was significantly lower than that of CNT and lower than during free breathing. During slow-paced breathing, BRS became again significantly higher than during fast breathing. In conclusion: (1) in free-breathing HF patients is present a greater modulation of respiratory volumes in the very-low-frequency range; (2) in HF patients modulation of respiration in the very-low and low frequency (around 0.1 Hz) ranges contributes to preserve baroreflex-mediated control of heart rate.


Subject(s)
Baroreflex , Heart Failure , Humans , Middle Aged , Aged , Baroreflex/physiology , Blood Pressure/physiology , Respiration , Respiratory Rate/physiology , Heart Rate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...