Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.262
Filter
1.
J Med Virol ; 96(6): e29709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828947

ABSTRACT

This study evaluated the epidemiological and clinical characteristics of human metapneumovirus (hMPV) infection among hospitalized patients with acute respiratory infections during 2015-2021 and assessed the impact of the coronavirus disease 2019 pandemic on hMPV infection. A single-center, retrospective cohort study was performed, including pediatric and adult patients with laboratory-confirmed hMPV. Of a total of 990 patients, 253 (25.6%), 105 (10.6%), 121 (12.2%), and 511 (51.6%) belonged to age groups 0-2, 3-17, 18-59, and ≥60 years, respectively. The highest percentage (23.0%) of patients were hospitalized during 2019 and the lowest (4.7%) during 2020. Patients < 18 years experienced high rates of comorbidities (immunodeficiencies: 14.4% and malignancies: 29.9%). Here, 37/39 (94.9%) of all bronchiolitis cases were diagnosed in patients < 2 years, whereas more patients in older age groups were diagnosed with pneumonia. A greater proportion of hMPV patients diagnosed with viral coinfection (mostly respiratory syncytial virus and adenovirus) were <18 years. The highest percentages of intensive care unit admissions were recorded among patients < 18 years. Our findings demonstrate that hMPV is an important cause of morbidity in young children and a possibly underestimated cause of morbidity among older adults.


Subject(s)
COVID-19 , Coinfection , Hospitalization , Metapneumovirus , Paramyxoviridae Infections , Humans , Retrospective Studies , Metapneumovirus/isolation & purification , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Israel/epidemiology , Middle Aged , Child , Male , Adult , Female , Infant , Adolescent , Child, Preschool , Hospitalization/statistics & numerical data , Young Adult , COVID-19/epidemiology , COVID-19/virology , Aged , Coinfection/epidemiology , Coinfection/virology , Infant, Newborn , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Comorbidity , Aged, 80 and over , SARS-CoV-2
2.
BMC Infect Dis ; 24(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824572

ABSTRACT

BACKGROUND: Nonpharmaceutical interventions (NPIs) implemented to reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have suppressed the spread of other respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to explore the epidemiological trends and clinical characteristics of Mycoplasma pneumoniae (MP) infection among inpatient children with lower respiratory tract infection (LRTI) before and during the COVID-19 pandemic, and investigate the long-term effects of China's NPIs against COVID-19 on the epidemiology of MP among inpatient children with LRTI. METHODS: Children hospitalised for LRTI at the Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between January 2019 and December 2022 were tested for common respiratory pathogens, including Mycoplasma pneumoniae (MP), Chlamydia trachomatis (CT) and other bacteria. Clinical data on age, sex, season of onset, disease spectrum, and combined infection in children with MP-induced LRTI in the past 4 years were collected and analysed. RESULTS: Overall, 15909 patients were enrolled, and MP-positive cases were 1971 (34.0%), 73 (2.4%), 176 (5.8%), and 952 (20.6%) in 2019, 2020, 2021, and 2022, respectively, with a significant statistical difference in the MP-positive rate over the 4 years (p <0.001). The median age of these children was preschool age (3-6 years), except for 2022, when they were school age (7-12 years), with statistical differences. Comparing the positive rates of different age groups, the school-age children (7-12 years) had the highest positive rate, followed by the preschoolers (3-6 years) in each of the 4 years. Compared among different seasons, the positive rate of MP in children with LRTI was higher in summer and autumn, whereas in 2020, it was highest in spring. The monthly positive rate peaked in July 2019, remained low from 2020 to 2021, and rebounded until 2022. Regarding the disease spectrum, severe pneumonia accounted for the highest proportion (46.3%) pre-pandemic and lowest (0%) in 2020. CONCLUSION: Trends in MP detection in children with LRTIs suggest a possible correlation between COVID-19 NPIs and significantly reduced detection rates. The positivity rate of MP gradually rose after 2 years. The epidemic season showed some differences, but school-age children were more susceptible to MP before and during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Respiratory Tract Infections , Humans , China/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Male , Female , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Adolescent , Infant , SARS-CoV-2 , Pandemics
3.
New Microbiol ; 47(1): 28-32, 2024 May.
Article in English | MEDLINE | ID: mdl-38700880

ABSTRACT

Acute respiratory tract infections (ARI) are common diseases in children and adults and could cause severe infections in high-risk patients, like the immunocompromised and elderly, and are the leading cause of morbidity, hospitalization and mortality. This study aimed to explore the prevalence of respiratory viruses and the clinical impact of single- and multi-infection among hospitalized patients in various age groups. 3578 nasopharyngeal swabs (NPS) were analyzed for pathogen detection of acute respiratory tract infections. 930 out of 3578 NPS were diagnosed positive for at least one respiratory virus. The distribution of viral infections, prevalence and pathogen, differed significantly among age groups. Most RTI are observed in the age group over 65 years (50.6%) with a high SARS-CoV2 prevalence, following by group <5 years (25.6%), where the most frequently detected viruses were RSV, Rhinovirus, FluA-H3, MPV, and AdV. The co-infection rate also varies according to age and, in some cases, especially in older adults, could have severe clinical impact. This study emphasizes that it is important to know and analyze, in all age groups of hospitalized patients, the epidemiology of respiratory viruses, the prevalence of coinfections, and the clinical impact of various pathogens. Furthermore, in a clinical setting, the rapid diagnosis of respiratory infections by means of molecular tests is crucial not only to avoid hospital outbreaks, but also to allow early and optimal treatment to reduce morbidity and mortality.


Subject(s)
Coinfection , Respiratory Tract Infections , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Aged , Adult , Middle Aged , Child, Preschool , Adolescent , Child , Male , Young Adult , Female , Infant , Coinfection/epidemiology , Coinfection/virology , Aged, 80 and over , COVID-19/epidemiology , Prevalence , Hospitalization , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/virology , Infant, Newborn , Pandemics , Viruses/isolation & purification , Viruses/classification , Viruses/genetics
4.
New Microbiol ; 47(1): 80-87, 2024 May.
Article in English | MEDLINE | ID: mdl-38700887

ABSTRACT

The COVID-19 pandemic forced the adoption of non-pharmaceutical interventions (NPIs) which influenced the circulation of other respiratory pathogens, such as Influenza virus (FLU), Parainfluenza virus (PIV), Respiratory Syncytial virus (RSV), Rhinovirus (RV), Enterovirus (EV), Adenovirus (AdV), Human Metapneumovirus (hMPV), and Human Coronavirus (CoV). The aim of the current study was to investigate how, with the end of the pandemic, the withdrawal of the NPIs impacted on the circulation and distribution of common respiratory viruses. The analyzed samples were collected from June 2021 to March 2023 (post-pandemic period) and compared to ones from the pandemic period. Nucleic acid detection of all respiratory viruses was performed by multiplex real time Polymerase Chain Reaction (PCR) and sequencing was conducted by Next Generation Sequencing (NGS) technique. Our analysis shows that the NPIs adopted against SARS-CoV-2 were also effective in controlling the spread of other respiratory viruses. Moreover, we documented how RV/EVs were the most commonly identified species, with the more abundant strains represented by Coxsackievirus (CV)-A/B and RV-A/C. RV/EVs were also detected in some co-infection cases; in particular, the majority of co-infections concerned CV-B/RV-A, CV-B/ECHO. Given the pandemic potential of respiratory viruses, accurate molecular screening is essential for a proper surveillance and prevention strategy.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , Italy/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Pandemics , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Adult , Male , Child
5.
Influenza Other Respir Viruses ; 18(5): e13275, 2024 May.
Article in English | MEDLINE | ID: mdl-38692663

ABSTRACT

BACKGROUND: Influenza, respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) are common respiratory viruses causing similar symptoms. Optimal tools to assess illness severity for these viruses have not been defined. Using the Hospitalized Acute Respiratory Tract Infection (HARTI) study data, we report symptom severity by clinician-rated clinical severity scores (CSS) in adults with influenza, RSV, or hMPV and correlations between CSS and patient-reported outcomes (PROs). METHODS: HARTI was a global epidemiologic study in adults hospitalized with acute respiratory tract infections. Patients were assessed at enrollment within 24 h of admission with CSS and twice during hospitalization with CSS, Respiratory Infection Intensity and Impact Questionnaire™ (RiiQ™), and EQ-5D-5L. Data were summarized descriptively, stratified by pathogen and baseline and hospitalization characteristics. Domain (general, upper respiratory, and lower respiratory) and sign/symptom subscores are presented for CSS; sign/symptom subscores are presented for RiiQ™ results. RESULTS: Data from 635 patients with influenza, 248 with RSV, and 107 with hMPV were included. At enrollment, total CSS and general and lower respiratory signs/symptoms (LRS) scores were higher for RSV and hMPV than influenza. Between-pathogen differences were greatest for LRS scores. Dyspnea, rales/rhonchi, wheezing, and shortness of breath scores trended higher for RSV and hMPV than influenza. RiiQ™ scores for cough, fatigue, and short of breath were strongly correlated with corresponding clinician-rated symptoms. CONCLUSIONS: These findings support the use of PROs (e.g., the RiiQ™) correlating with clinician assessments to gauge patient well-being and aid patient management by accurately assessing respiratory illness severity due to RSV, hMPV, or influenza.


Subject(s)
Hospitalization , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Severity of Illness Index , Humans , Metapneumovirus/isolation & purification , Male , Female , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Middle Aged , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/epidemiology , Influenza, Human/virology , Influenza, Human/complications , Influenza, Human/epidemiology , Adult , Paramyxoviridae Infections/virology , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/complications , Aged , Young Adult , Respiratory Syncytial Virus, Human/isolation & purification , Aged, 80 and over , Adolescent
6.
Allergol Immunopathol (Madr) ; 52(3): 22-30, 2024.
Article in English | MEDLINE | ID: mdl-38721952

ABSTRACT

BACKGROUND: Preschoolers frequently have respiratory infections (RIs), which may cause wheezing in some subjects. Type 2 polarization may favor increased susceptibility to RIs and associated wheezing. Non-pharmacological remedies are garnering increasing interest as possible add-on therapies. The present preliminary study investigated the efficacy and safety of a new multi-component nasal spray in preschoolers with frequent RIs and associated wheezing. METHODS: Some preschoolers with these characteristics randomly took this product, containing lactoferrin, dipotassium glycyrrhizinate, carboxymethyl-beta-glucan, and vitamins C and D3 (Saflovir), two sprays per nostril twice daily for 3 months. Other children were randomly treated only with standard therapy. Outcomes included the number of RIs and wheezing episodes, use of medications, and severity of clinical manifestations. RESULTS: Preschoolers treated add-on with this multicomponent product experienced fewer RIs and used fewer beta-2 agonists than untreated children (P = 0.01 and 0.029, respectively). CONCLUSIONS: This preliminary study demonstrated that a multicomponent product, administered add-on as a nasal spray, could reduce the incidence of RIs and use of symptomatic drugs for relieving wheezing in children.


Subject(s)
Nasal Sprays , Respiratory Sounds , Respiratory Tract Infections , Humans , Child, Preschool , Respiratory Sounds/drug effects , Female , Male , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/diagnosis , Ascorbic Acid/administration & dosage , Lactoferrin/administration & dosage , Glycyrrhizic Acid/administration & dosage , Treatment Outcome , beta-Glucans/administration & dosage , Cholecalciferol/administration & dosage , Infant
7.
JMIR Public Health Surveill ; 10: e40792, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709551

ABSTRACT

BACKGROUND: A comprehensive description of the combined effect of SARS-CoV-2 and respiratory viruses other than SARS-CoV-2 (ORVs) on acute respiratory infection (ARI) hospitalizations is lacking. OBJECTIVE: This study aimed to compare the viral etiology of ARI hospitalizations before the pandemic (8 prepandemic influenza seasons, 2012-13 to 2019-20) and during 3 pandemic years (periods of increased SARS-CoV-2 and ORV circulation in 2020-21, 2021-22, and 2022-23) from an active hospital-based surveillance network in Quebec, Canada. METHODS: We compared the detection of ORVs and SARS-CoV-2 during 3 pandemic years to that in 8 prepandemic influenza seasons among patients hospitalized with ARI who were tested systematically by the same multiplex polymerase chain reaction (PCR) assay during periods of intense respiratory virus (RV) circulation. The proportions of infections between prepandemic and pandemic years were compared by using appropriate statistical tests. RESULTS: During prepandemic influenza seasons, overall RV detection was 92.7% (1384/1493) (respiratory syncytial virus [RSV]: 721/1493, 48.3%; coinfections: 456/1493, 30.5%) in children (<18 years) and 62.8% (2723/4339) (influenza: 1742/4339, 40.1%; coinfections: 264/4339, 6.1%) in adults. Overall RV detection in children was lower during pandemic years but increased from 58.6% (17/29) in 2020-21 (all ORVs; coinfections: 7/29, 24.1%) to 90.3% (308/341) in 2021-22 (ORVs: 278/341, 82%; SARS-CoV-2: 30/341, 8.8%; coinfections: 110/341, 32.3%) and 88.9% (361/406) in 2022-23 (ORVs: 339/406, 84%; SARS-CoV-2: 22/406, 5.4%; coinfections: 128/406, 31.5%). In adults, overall RV detection was also lower during pandemic years but increased from 43.7% (333/762) in 2020-21 (ORVs: 26/762, 3.4%; SARS-CoV-2: 307/762, 40.3%; coinfections: 7/762, 0.9%) to 57.8% (731/1265) in 2021-22 (ORVs: 179/1265, 14.2%; SARS-CoV-2: 552/1265, 43.6%; coinfections: 42/1265, 3.3%) and 50.1% (746/1488) in 2022-23 (ORVs: 409/1488, 27.5%; SARS-CoV-2: 337/1488, 22.6%; coinfections: 36/1488, 2.4%). No influenza or RSV was detected in 2020-21; however, their detection increased in the 2 subsequent years but did not reach prepandemic levels. Compared to the prepandemic period, the peaks of RSV hospitalization shifted in 2021-22 (16 weeks earlier) and 2022-23 (15 weeks earlier). Moreover, the peaks of influenza hospitalization shifted in 2021-22 (17 weeks later) and 2022-23 (4 weeks earlier). Age distribution was different compared to the prepandemic period, especially during the first pandemic year. CONCLUSIONS: Significant shifts in viral etiology, seasonality, and age distribution of ARI hospitalizations occurred during the 3 pandemic years. Changes in age distribution observed in our study may reflect modifications in the landscape of circulating RVs and their contribution to ARI hospitalizations. During the pandemic period, SARS-CoV-2 had a low contribution to pediatric ARI hospitalizations, while it was the main contributor to adult ARI hospitalizations during the first 2 seasons and dropped below ORVs during the third pandemic season. Evolving RVs epidemiology underscores the need for increased scrutiny of ARI hospitalization etiology to inform tailored public health recommendations.


Subject(s)
COVID-19 , Hospitalization , Respiratory Tract Infections , Humans , Quebec/epidemiology , Hospitalization/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Adult , Adolescent , Middle Aged , Female , COVID-19/epidemiology , Male , Aged , Child, Preschool , Infant , Young Adult , SARS-CoV-2 , Aged, 80 and over , Influenza, Human/epidemiology , Infant, Newborn , Pandemics
8.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717926

ABSTRACT

Background. Respiratory tract infections are among the most important causes of mortality and morbidity in children worldwide. The COVID-19 pandemic has affected the distribution of seasonal respiratory viruses as in all areas of life. In this study, we have aimed to evaluate the changes in the rates of seasonal respiratory viruses with the onset of the pandemic.Methods. This study included patients who were admitted to the Pediatrics Clinic of Eskisehir Osmangazi University Faculty of Medicine Hospital between December 2018 and February 2022 with respiratory tract infections and in whom pathogens were detected from nasopharyngeal swab samples analysed by multiplex PCR method.Results. A total of 833 respiratory tract pathogens were detected in 684 cases consisting of male (55.3 %), and female (44.7 %), patients with a total mean age of 42 months. Single pathogen was revealed in 550, and multiple pathogens in 134 cases. Intensive care was needed in 14 % of the cases. Most frequently influenza A/B, rhinovirus and respiratory syncytial virus (RSV) were detected during the pre-pandemic period, while rhinovirus, RSV, and adenovirus were observed during the lockdown period. In the post-lockdown period, the incidence rates of rhinovirus, RSV, human bocavirus (HboV) (12 %), influenza virus infections increased, and patients with RSV and bocavirus infections required intensive care hospitalization.Conclusion. It is thought that the COVID-9 pandemic lockdown measures may have an impact on the distribution of seasonal respiratory viruses, especially RSV and influenza. Current, prospective and large case series regarding the mechanism of action and dynamics are needed.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Seasons , Humans , Female , Male , COVID-19/epidemiology , COVID-19/virology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Infant , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Child , Rhinovirus/isolation & purification , Rhinovirus/genetics , Nasopharynx/virology , Adolescent , Influenza, Human/epidemiology , Influenza, Human/virology , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology
9.
Sci Rep ; 14(1): 10431, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714841

ABSTRACT

Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.


Subject(s)
Common Cold , Pan troglodytes , Animals , Humans , Child , Female , Male , Child, Preschool , Common Cold/epidemiology , Common Cold/virology , Adult , Uganda/epidemiology , Prospective Studies , Zoonoses/epidemiology , Zoonoses/virology , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Ape Diseases/epidemiology , Ape Diseases/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/veterinary , Rhinovirus/isolation & purification , Rhinovirus/genetics , SARS-CoV-2/isolation & purification , Incidence
10.
Sci Rep ; 14(1): 10462, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714885

ABSTRACT

Respiratory infections are common causes of acute exacerbation of chronic obstructive lung disease (AECOPD). We explored whether the pathogens causing AECOPD and clinical features changed from before to after the coronavirus disease 2019 (COVID-19) outbreak. We reviewed the medical records of patients hospitalized with AECOPD at four university hospitals between January 2017 and December 2018 and between January 2021 and December. We evaluated 1180 patients with AECOPD for whom medication histories were available. After the outbreak, the number of patients hospitalized with AECOPD was almost 44% lower compared with before the outbreak. Patients hospitalized with AECOPD after the outbreak were younger (75 vs. 77 years, p = 0.003) and more often stayed at home (96.6% vs. 88.6%, p < 0.001) than patients of AECOPD before the outbreak. Hospital stay was longer after the outbreak than before the outbreak (10 vs. 8 days. p < 0.001). After the COVID-19 outbreak, the identification rates of S. pneumoniae (15.3 vs. 6.2%, p < 0.001) and Hemophilus influenzae (6.4 vs. 2.4%, p = 0.002) decreased, whereas the identification rates of P. aeruginosa (9.4 vs. 13.7%, p = 0.023), Klebsiella pneumoniae (5.3 vs. 9.8%, p = 0.004), and methicillin-resistant Staphylococcus aureus (1.0 vs. 2.8%, p = 0.023) increased. After the outbreak, the identification rate of influenza A decreased (10.4 vs. 1.0%, p = 0.023). After the outbreak, the number of patients hospitalized with AECOPD was lower and the identification rates of community-transmitted pathogens tended to decrease, whereas the rates of pathogens capable of chronic colonization tended to increase. During the period of large-scale viral outbreaks that require quarantine, patients with AECOPD might be given more consideration for treatment against strains that can colonize chronic respiratory disease rather than community acquired pathogens.


Subject(s)
COVID-19 , Hospitalization , Pulmonary Disease, Chronic Obstructive , Humans , COVID-19/epidemiology , COVID-19/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Aged , Male , Female , Aged, 80 and over , SARS-CoV-2/isolation & purification , Middle Aged , Pandemics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Disease Progression , Retrospective Studies , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/pathogenicity , Haemophilus influenzae/isolation & purification
11.
Viruses ; 16(5)2024 05 09.
Article in English | MEDLINE | ID: mdl-38793631

ABSTRACT

Viral co-infections are frequently observed among children, but whether specific viral interactions enhance or diminish the severity of respiratory disease is still controversial. This study aimed to investigate the type of viral mono- and co-infections by also evaluating viral correlations in 3525 respiratory samples from 3525 pediatric in/outpatients screened by the Allplex Respiratory Panel Assays and with a Severe Acute Respiratory Syndrome-COronaVirus 2 (SARS-CoV-2) test available. Overall, viral co-infections were detected in 37.8% of patients and were more frequently observed in specimens from children with lower respiratory tract infections compared to those with upper respiratory tract infections (47.1% vs. 36.0%, p = 0.003). SARS-CoV-2 and influenza A were more commonly detected in mono-infections, whereas human bocavirus showed the highest co-infection rate (87.8% in co-infection). After analyzing viral pairings using Spearman's correlation test, it was noted that SARS-CoV-2 was negatively associated with all other respiratory viruses, whereas a markedly significant positive correlation (p < 0.001) was observed for five viral pairings (involving adenovirus/human bocavirus/human enterovirus/metapneumoviruses/rhinovirus). The correlation between co-infection and clinical outcome may be linked to the type of virus(es) involved in the co-infection rather than simple co-presence. Further studies dedicated to this important point are needed, since it has obvious implications from a diagnostic and clinical point of view.


Subject(s)
COVID-19 , Coinfection , Hospitals, Pediatric , Respiratory Tract Infections , SARS-CoV-2 , Tertiary Care Centers , Humans , Coinfection/epidemiology , Coinfection/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Italy/epidemiology , Child, Preschool , Child , Infant , Female , Male , Tertiary Care Centers/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Adolescent , Human bocavirus/isolation & purification , Human bocavirus/genetics , Virus Diseases/epidemiology , Virus Diseases/virology , Hospitalization , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Infant, Newborn , Metapneumovirus/isolation & purification , Metapneumovirus/genetics
12.
Front Cell Infect Microbiol ; 14: 1378804, 2024.
Article in English | MEDLINE | ID: mdl-38736749

ABSTRACT

Introduction: Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods: In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results: Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion: The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.


Subject(s)
Coronavirus Infections , Coronavirus NL63, Human , Epidemics , Genotype , Phylogeny , Respiratory Tract Infections , Humans , Coronavirus NL63, Human/genetics , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/transmission , Child , Female , Male , Child, Preschool , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Infant , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Seasons , Mutation , Adolescent
13.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747932

ABSTRACT

BACKGROUND: Parainfluenza virus (PIV) is a significant etiological agent of acute lower respiratory tract infections (ALRIs) in infants and young children. The present study has been conducted to investigate the prevalence of recently identified respiratory viruses. METHODS: In total, 543 oropharyngeal or nasopharyngeal swab samples collected from hospitalized patients with acute respiratory symptoms (ARS) between January and December 2021 (5,653 females and 4,950 males) were tested for respiratory viruses using RT-PCR. RESULTS: At least one respiratory virus was detected by RT-PCR in 119 out of 175 samples (68%). The most frequently detected virus was human rhinovirus (HRV) (34, 6.5%), followed by human parainfluenza viruses (HPIVs) (19, 3.6%), human bocavirus (HBoV) (8, 1.5%), human adenovirus (HAdV) (7, 1.3%), and human respiratory syncytial virus (HRSV) (4, 0.8%). HPIV-3 accounted for 3.6% (19/175) of all viral pathogens and was the second most frequently detected viral pathogen in our study. HPIV-3 infections peaked in the fall (November) of 2021. Phylogenetic analysis of the coding region of the viral protein HA revealed that all 35 (100%) of 35 HPIV-infected patients were infected with HPIV-3. CONCLUSIONS: HPIV was an important causative pathogen associated with ALRI in children hospitalized in Korea in the late fall of 2021, as the social distancing rules for COVID-19 were relaxed. These findings highlight the im-portance of HPIV as a cause of ALRI.


Subject(s)
Respiratory Tract Infections , Humans , Female , Male , Infant , Child, Preschool , Prevalence , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Child , Republic of Korea/epidemiology , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Paramyxoviridae Infections/diagnosis , Adolescent
14.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Article in English | MEDLINE | ID: mdl-38725276

ABSTRACT

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Subject(s)
Respiratory Tract Infections , Humans , China/epidemiology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Infant , Male , Adolescent , Female , Prevalence , Infant, Newborn , Viruses/isolation & purification , Viruses/classification , Virus Diseases/epidemiology , Virus Diseases/virology , Coinfection/epidemiology , Coinfection/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Acute Disease/epidemiology
15.
Environ Health Perspect ; 132(5): 56001, 2024 May.
Article in English | MEDLINE | ID: mdl-38728217

ABSTRACT

BACKGROUND: Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES: The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS: We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS: We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n=78) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS: We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.


Subject(s)
Respiratory Tract Infections , Risk Assessment/methods , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Humans , SARS-CoV-2 , COVID-19/transmission , COVID-19/prevention & control , Staphylococcus aureus , Infection Control/methods , Legionella , Aerosols
16.
Medicine (Baltimore) ; 103(19): e38101, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728506

ABSTRACT

To understand the distribution and antimicrobial resistance (AMR) of pathogens in respiratory samples in Changle District People's Hospital in Fujian Province in recent years, and provide empirical guidance for infection control and clinical treatment in the region. A retrospective analysis was conducted on 5137 isolates of pathogens from respiratory samples collected from 2019 to 2022. The AMR patterns were systematically analyzed. For research purposes, the data was accessed on October 12, 2023. A total of 3517 isolates were included in the study, including 811 (23.06%) gram-positive bacteria and 2706 (76.94%) gram-negative bacteria. The top 3 gram-positive bacteria were Staphylococcus aureus with 455 isolates (12.94%), Streptococcus pneumoniae with 99 isolates (2.81%), and Staphylococcus hemolytic with 99 isolates (2.81%). The top 3 gram-negative bacteria were Klebsiella pneumoniae with 815 isolates (23.17%), Pseudomonas aeruginosa with 589 isolates (16.75%), and Acinetobacter baumannii with 328 isolates (9.33%). The proportion of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and K pneumoniae fluctuated between 41.9% and 70.5%, and 18.6% and 20.9%, respectively. The resistance rates of E coli, K pneumoniae, P aeruginosa, and A baumannii to carbapenems were 2.36%, 8.9%, 18.5%, and 19.6%, respectively. The prevalence of methicillin-resistant S aureus (MRSA) was 48.55%, but it decreased to 38.4% by 2022. The resistance rate of Staphylococcus haemolyticus to methicillin was 100%, and 1 case of vancomycin-resistant strain was detected. K pneumoniae, P aeruginosa, A baumannii, and S aureus are the main pathogens in respiratory samples. Although the resistance rates of some multidrug-resistant strains have decreased, ESBL-producing Enterobacteriaceae, carbapenem-resistant bacteria have still increased. Therefore, it is necessary to strengthen the monitoring of pathogen resistance, promote rational use of antibiotics, and promptly report findings.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Respiratory Tract Infections , Humans , Retrospective Studies , China/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/drug therapy , COVID-19/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Microbial Sensitivity Tests , SARS-CoV-2 , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
17.
NPJ Prim Care Respir Med ; 34(1): 11, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755181

ABSTRACT

Tobacco control policies can protect child health. We hypothesised that the parallel introduction in 2008 of smoke-free restaurants and bars in the Netherlands, a tobacco tax increase and mass media campaign, would be associated with decreases in childhood wheezing/asthma, respiratory tract infections (RTIs), and otitis media with effusion (OME) presenting in primary care. We conducted an interrupted time series study using electronic medical records from the Dutch Integrated Primary Care Information database (2000-2016). We estimated step and slope changes in the incidence of each outcome with negative binomial regression analyses, adjusting for underlying time-trends, seasonality, age, sex, electronic medical record system, urbanisation, and social deprivation. Analysing 1,295,124 person-years among children aged 0-12 years, we found positive step changes immediately after the policies (incidence rate ratio (IRR): 1.07, 95% CI: 1.01-1.14 for wheezing/asthma; IRR: 1.16, 95% CI: 1.13-1.19 for RTIs; and IRR: 1.24, 95% CI: 1.14-1.36 for OME). These were followed by slope decreases for wheezing/asthma (IRR: 0.95/year, 95% CI: 0.93-0.97) and RTIs (IRR: 0.97/year, 95% CI: 0.96-0.98), but a slope increase in OME (IRR: 1.05/year, 95% CI: 1.01-1.09). We found no clear evidence of benefit of changes in tobacco control policies in the Netherlands for the outcomes of interest. Our findings need to be interpreted with caution due to substantial uncertainty in the pre-legislation outcome trends.


Subject(s)
Asthma , Primary Health Care , Respiratory Sounds , Respiratory Tract Infections , Humans , Child, Preschool , Infant , Primary Health Care/statistics & numerical data , Female , Male , Netherlands/epidemiology , Child , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Asthma/epidemiology , Smoke-Free Policy/legislation & jurisprudence , Infant, Newborn , Interrupted Time Series Analysis , Tobacco Smoke Pollution/prevention & control , Otitis Media/epidemiology , Incidence , Tobacco Control
18.
Int Breastfeed J ; 19(1): 35, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755734

ABSTRACT

BACKGROUND: Despite growing evidence of the impacts of exclusively breastfeeding infants during the first 6 months of life on preventing childhood infections and ensuring optimal health, only a small number of studies have quantified this association in South Asia. METHODS: We analyzed data from the Demographic and Health Surveys in Afghanistan (2015; n = 3462), Bangladesh (2017-2018; n = 1084), India (2019-2021; n = 26,101), Nepal (2022; n = 581), and Pakistan (2017-2018; n = 1,306), including babies aged 0-6 months. Multivariate logistic regression models were used to determine the association between exclusive breastfeeding in the last 24 h and diarrhoea, acute respiratory infections, and fever in the two weeks before the survey. We also examined the association between other infant and young feeding indicators and these outcomes. RESULTS: Infants who were exclusive breastfed had decreased odds of diarrhoea in Afghanistan (AOR: 0.49, 95% CI 0.35, 0.70), India (AOR: 0.80, 95% CI 0.70, 0.91), and Nepal (AOR: 0.42, 95% CI 0.20, 0.89). Compared with infants who were not exclusive breastfed, infants who were exclusively breastfed were less likely to have fever in Afghanistan (AOR: 0.36, 95% CI 0.26, 0.50) and India (AOR: 0.75, 95% CI 0.67, 0.84). Exclusive breastfeeding was associated with lower odds of acute respiratory infections in Afghanistan (AOR: 0.57, 95% CI 0.39, 0.83). Early initiation of breastfeeding was protective against diarrhoea in India. Bottle feeding was a risk factor for diarrhoea in India and for fever in Afghanistan and India. Bottle feeding was also a risk factor for acute respiratory infection in Afghanistan and India. CONCLUSIONS: Not exclusive breastfeeding is a risk factor for diarrhoea, acute respiratory infections, and fever in some South Asian countries. These findings could have substantial implications for global and national efforts to increase exclusive breastfeeding rates. More support, advocacy, and action are required to boost breastfeeding rates as a crucial public health measure.


Subject(s)
Breast Feeding , Fever , Health Surveys , Respiratory Tract Infections , Humans , Breast Feeding/statistics & numerical data , Infant , Infant, Newborn , Female , Male , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Fever/epidemiology , Adult , Diarrhea/epidemiology , Young Adult , Morbidity , India/epidemiology , Adolescent , Nepal/epidemiology , Pakistan/epidemiology
19.
Influenza Other Respir Viruses ; 18(5): e13303, 2024 May.
Article in English | MEDLINE | ID: mdl-38757258

ABSTRACT

BACKGROUND: Data available for RSV and influenza infections among children < 2 years in Mongolia are limited. We present data from four districts of Ulaanbaatar from April 2015 to June 2021. METHODS: This study was nested in an enhanced surveillance project evaluating pneumococcal conjugate vaccine (PCV13) impact on the incidence of hospitalized lower respiratory tract infections (LRTIs). Our study was restricted to children aged < 2 years with arterial O2 saturation < 93% and children with radiological pneumonia. Nasopharyngeal (NP) swabs collected at admission were tested for RSV and influenza using qRT-PCR. NP swabs of all patients with radiological pneumonia and of a subset of randomly selected NP swabs were tested for S. pneumoniae (S.p.) by qPCR and for serotypes by culture and DNA microarray. RESULTS: Among 5705 patients, 2113 (37.0%) and 386 (6.8%) had RSV and influenza infections, respectively. Children aged 2-6 months had a higher percentage of very severe RSV infection compared to those older than 6 months (42.2% versus 31.4%, p-value Fisher's exact = 0.001). S.p. carriage was detected in 1073/2281 (47.0%) patients. Among S.p. carriage cases, 363/1073 (33.8%) had S.p. and RSV codetection, and 82/1073 (7.6%) had S.p. and influenza codetection. S.p. codetection with RSV/influenza was not associated with more severe LRTIs, compared to only RSV/influenza cases. CONCLUSION: In Mongolia, RSV is an important pathogen causing more severe LRTI in children under 6 months of age. Codetection of RSV or influenza virus and S.p. was not associated with increased severity.


Subject(s)
Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Mongolia/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Infant , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Child, Preschool , Nasopharynx/virology , Infant, Newborn , Incidence , Hospitalization/statistics & numerical data , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
20.
J Tradit Chin Med ; 44(3): 586-594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767644

ABSTRACT

OBJECTIVE: To determine the effectiveness of pediatric Tuina (PT) in preventing recurrent acute respiratory tract infections (ARTIs) in children. METHODS: This is a retrospective cohort study based on the electronic medical records of children with recurrent ARTIs in 2016. Children were divided into a PT group or a non-PT group, according to whether they had received PT or not in 2016. The primary outcome was the number of ARTI episodes in 2017 and 2018. The secondary outcomes were the number of ARTIs leading to outpatient department visits and outpatient antibiotic prescriptions due to ARTIs in the same time period. Negative binomial regressions were used to detect the association between PT and the outcomes. RESULTS: A total of 2303 children were included in the analysis, including 94 in the PT group and 2209 in the non-PT group. Children who received PT six or more times in 2016 had fewer episodes of ARTIs in 2017 [incidence rate ratio (IRR): 0.59, 95% confidence interval (CI) (0.42-0.84)] and 2018 [IRR: 0.58, 95% CI (0.36-0.94)] and fewer outpatient department visits due to ARTIs in 2017 [IRR: 0.56, 95% CI (0.38-0.83)] than children who had not received PT in 2016. There was no significant difference in the number of outpatient antibiotic prescriptions between the two groups. CONCLUSIONS: Receiving PT six or more times within one year is associated with a decrease in recurrent ARTIs in children in the following two years. Randomized controlled trials are needed for effect evaluation prior to establishing PT as a method for preventing recurrent ARTIs among children.


Subject(s)
Respiratory Tract Infections , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Retrospective Studies , Male , Female , Child, Preschool , Child , China/epidemiology , Infant , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Recurrence , Adolescent , Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...