Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710714

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Subject(s)
Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
2.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598560

ABSTRACT

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Subject(s)
Blood-Retinal Barrier , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Blood-Retinal Barrier/virology , COVID-19/immunology , COVID-19/virology , Mice , Humans , Retina/virology , Retina/immunology , Retina/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Inflammation/immunology , Inflammation/virology , Betacoronavirus/physiology , Viral Tropism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/pathology
3.
PLoS One ; 17(1): e0261821, 2022.
Article in English | MEDLINE | ID: mdl-35041689

ABSTRACT

The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.


Subject(s)
Antiviral Agents/pharmacology , Models, Biological , Printing, Three-Dimensional , Retina , Virus Replication/drug effects , Zika Virus Infection , Zika Virus/physiology , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Drug Evaluation, Preclinical , Hep G2 Cells , Humans , Retina/metabolism , Retina/virology , Vero Cells , Virus Replication/genetics , Zika Virus Infection/drug therapy , Zika Virus Infection/genetics , Zika Virus Infection/metabolism
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360899

ABSTRACT

(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12-/- (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, ß and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.


Subject(s)
Apoptosis/genetics , Caspase 12/deficiency , Cytomegalovirus Retinitis/enzymology , Immunity, Innate/genetics , Muromegalovirus/physiology , Retina/enzymology , Retinal Neurons/enzymology , Animals , Caspase 12/genetics , Cytomegalovirus Retinitis/genetics , Cytomegalovirus Retinitis/virology , Female , In Situ Nick-End Labeling/methods , Interferons/biosynthesis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Retina/virology , Retinal Neurons/virology , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Virus Replication/genetics
5.
Am J Pathol ; 191(10): 1787-1804, 2021 10.
Article in English | MEDLINE | ID: mdl-34197777

ABSTRACT

Although pathologies associated with acute virus infections have been extensively studied, the effects of long-term latent virus infections are less well understood. Human cytomegalovirus, which infects 50% to 80% of humans, is usually acquired during early life and persists in a latent state for the lifetime. The purpose of this study was to determine whether systemic murine cytomegalovirus (MCMV) infection acquired early in life disseminates to and becomes latent in the eye and if ocular MCMV can trigger in situ inflammation and occurrence of ocular pathology. This study found that neonatal infection of BALB/c mice with MCMV resulted in dissemination of virus to the eye, where it localized principally to choroidal endothelia and pericytes and less frequently to the retinal pigment epithelium (RPE) cells. MCMV underwent ocular latency, which was associated with expression of multiple virus genes and from which MCMV could be reactivated by immunosuppression. Latent ocular infection was associated with significant up-regulation of several inflammatory/angiogenic factors. Retinal and choroidal pathologies developed in a progressive manner, with deposits appearing at both basal and apical aspects of the RPE, RPE/choroidal atrophy, photoreceptor degeneration, and neovascularization. The pathologies induced by long-term ocular MCMV latency share features of previously described human ocular diseases, such as age-related macular degeneration.


Subject(s)
Aging/pathology , Choroid/pathology , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Muromegalovirus/physiology , Retina/pathology , Angiogenesis Inducing Agents/metabolism , Animals , Animals, Newborn , Antigens, Viral/metabolism , Choroid/diagnostic imaging , Choroid/ultrastructure , Choroid/virology , DNA, Viral/metabolism , Gene Expression Regulation, Viral , Herpesviridae Infections/diagnostic imaging , Host-Pathogen Interactions , Immunosuppression Therapy , Inflammation/pathology , Mice, Inbred BALB C , Muromegalovirus/genetics , Phagocytes/pathology , Retina/diagnostic imaging , Retina/ultrastructure , Retina/virology , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/pathology , Tomography, Optical Coherence , Virus Activation
6.
JAMA Ophthalmol ; 139(9): 1015-1021, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34323931

ABSTRACT

Importance: The presence of the SARS-CoV-2 virus in the retina of deceased patients with COVID-19 has been suggested through real-time reverse polymerase chain reaction and immunological methods to detect its main proteins. The eye has shown abnormalities associated with COVID-19 infection, and retinal changes were presumed to be associated with secondary microvascular and immunological changes. Objective: To demonstrate the presence of presumed SARS-CoV-2 viral particles and its relevant proteins in the eyes of patients with COVID-19. Design, Setting, and Participants: The retina from enucleated eyes of patients with confirmed COVID-19 infection were submitted to immunofluorescence and transmission electron microscopy processing at a hospital in São Paulo, Brazil, from June 23 to July 2, 2020. After obtaining written consent from the patients' families, enucleation was performed in patients deceased with confirmed SARS-CoV-2 infection. All patients were in the intensive care unit, received mechanical ventilation, and had severe pulmonary involvement by COVID-19. Main Outcomes and Measures: Presence of presumed SARS-CoV-2 viral particles by immunofluorescence and transmission electron microscopy processing. Results: Three patients who died of COVID-19 were analyzed. Two patients were men, and 1 was a woman. The age at death ranged from 69 to 78 years. Presumed S and N COVID-19 proteins were seen by immunofluorescence microscopy within endothelial cells close to the capillary flame and cells of the inner and the outer nuclear layers. At the perinuclear region of these cells, it was possible to observe by transmission electron microscopy double-membrane vacuoles that are consistent with the virus, presumably containing COVID-19 viral particles. Conclusions and Relevance: The present observations show presumed SARS-CoV-2 viral particles in various layers of the human retina, suggesting that they may be involved in some of the infection's ocular clinical manifestations.


Subject(s)
COVID-19/virology , Retina/virology , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Aged , COVID-19/diagnosis , COVID-19/mortality , Female , Fluorescent Antibody Technique , Humans , Male , Microscopy, Electron, Transmission , Retina/ultrastructure , SARS-CoV-2/ultrastructure , Virion/ultrastructure
7.
PLoS One ; 16(5): e0251682, 2021.
Article in English | MEDLINE | ID: mdl-33984050

ABSTRACT

BACKGROUND/OBJECTIVES: The systemic organ involvement of SARS-CoV-2 needs to be thoroughly investigated including the possibility of an ocular reservoir in humans. To examine retinal tissues and vitreous for histopathology and SARS-CoV-2 presence with regard to possible effects on the human retina and/ or vitreous. We performed histopathological analyses and quantitative (q)RT-PCR-testing for SARS-CoV-2 RNA on retinal tissues and vitreous of COVID-19 postmortem donors. SUBJECTS/METHODS: Included in this study were 10 eyes of 5 deceased COVID-19 patients. The diagnosis of SARS-CoV-2 infection was confirmed via pharyngeal swabs and broncho-alveolar fluids. The highest level of personal protective equipment (PPE) and measures was employed during fluid-tissue procurement and preparation. Histopathological examinations and qRT-PCR-testing were carried out for all retinal tissues and vitreous fluids. RESULTS: The histopathological examinations revealed no signs of morphologically identifiable retinal inflammation or vessel occlusions based on hematoxylin and eosin stains. By qRT-PCRs, we detected no significant level of viral RNA in human retina and vitreous. CONCLUSIONS: In this study, no significant level of SARS-CoV-2-RNA was detected in the human retinal and vitreous fluid samples of deceased COVID-19 patients. Histopathological examinations confirmed no morphological sign of damage to retinal vasculature or tissues. Further studies are needed to confirm or refute the results.


Subject(s)
COVID-19/diagnosis , Retina/virology , SARS-CoV-2/isolation & purification , Autopsy , COVID-19/pathology , COVID-19 Nucleic Acid Testing , Humans , RNA, Viral/analysis , Retina/pathology , Vitreous Body/pathology , Vitreous Body/virology
8.
Acta Neuropathol Commun ; 9(1): 97, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034828

ABSTRACT

Zika virus (ZIKV), a mosquito-borne flavivirus, can cause severe eye disease and even blindness in newborns. However, ZIKV-induced retinal lesions have not been studied in a comprehensive way, mechanisms of ZIKV-induced retinal abnormalities are unknown, and no therapeutic intervention is available to treat or minimize the degree of vision loss in patients. Here, we developed a novel mouse model of ZIKV infection to evaluate its impact on retinal structure. ZIKV (20 plaque-forming units) was inoculated into neonatal wild type C57BL/6J mice at postnatal day (P) 0 subcutaneously. Retinas of infected mice and age-matched controls were collected at various ages, and retinal structural alterations were analyzed. We found that ZIKV induced progressive neuronal and vascular damage and retinal inflammation starting from P8. ZIKV-infected retina exhibited dramatically decreased thickness with loss of neurons, initial neovascular tufts followed by vessel dilation and degeneration, increased microglia and leukocyte recruitment and activation, degeneration of astrocyte network and gliosis. The above changes may involve inflammation and endoplasmic reticulum stress-mediated cell apoptosis and necroptosis. Moreover, we evaluated the efficacy of preclinical drugs and the safety of ZIKV vaccine candidate in this mouse model. We found that ZIKV-induced retinal abnormalities could be blocked by a selective flavivirus inhibitor NITD008 and a live-attenuated ZIKV vaccine candidate could potentially induce retinal abnormalities. Overall, we established a novel mouse model and provide a direct causative link between ZIKV and retinal lesion in vivo, which warrants further investigation of the underlying mechanisms of ZIKV-induced retinopathy and the development of effective therapeutics.


Subject(s)
Retina/growth & development , Retina/virology , Retinal Degeneration/pathology , Retinal Degeneration/virology , Zika Virus Infection/pathology , Zika Virus , Animals , Animals, Newborn , Mice , Mice, Inbred C57BL , Retinal Vasculitis/pathology , Retinal Vasculitis/virology , Retinal Vessels/pathology , Retinal Vessels/virology , Zika Virus/isolation & purification
9.
BMJ Case Rep ; 14(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33408110

ABSTRACT

A 10-year-old boy underwent stem cell transplant for Hodgkin's lymphoma and developed vomiting and seizure in the postoperative period. An ophthalmic referral was made from intensive care unit, to rule out papilledema. On examination, there was no papilledema in both eyes, instead there were areas of retinal necrosis with no haemorrhages or vitritis in right eye. Cerebrospinal fluid serology was negative for herpes but MRI showed hyperintensity in temporal lobe. A clinical diagnosis of progressive outer retinal necrosis (PORN) was made and fundus picture was documented with help of a smartphone and 20D lens. High-dose intravenous injection acyclovir was started and PORN lesion improved on treatment.


Subject(s)
Antiviral Agents/administration & dosage , Bone Marrow Transplantation/adverse effects , Herpesviridae Infections/diagnosis , Hodgkin Disease/therapy , Retina/pathology , Retinitis/diagnosis , Acyclovir/administration & dosage , Child , Diagnosis, Differential , Dose-Response Relationship, Drug , Herpesviridae Infections/drug therapy , Herpesviridae Infections/immunology , Hodgkin Disease/immunology , Humans , Immunosuppressive Agents/adverse effects , Incidental Findings , Magnetic Resonance Imaging , Male , Necrosis/diagnosis , Necrosis/drug therapy , Necrosis/immunology , Retina/diagnostic imaging , Retina/virology , Retinal Necrosis Syndrome, Acute/diagnosis , Retinitis/drug therapy , Retinitis/immunology , Treatment Outcome , Virus Activation/immunology
10.
Retin Cases Brief Rep ; 15(1): 43-44, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-29528885

ABSTRACT

PURPOSE: To the best of our knowledge, we present a rare case report describing an occurrence of acute retinal necrosis in an otherwise healthy individual who received the shingles vaccine. METHODS: Observational case report. PATIENT: A 63-year-old healthy and immunocompetent white man presented with change of vision in the left eye after blunt trauma. A diagnosis of corneal abrasion was made. During follow-up, a detailed history discovered a progressive deterioration in vision over the past few weeks. Three months before presentation, he had received the shingles vaccine (Zostavax); 1 month before presentation, he reported an episode of varicella skin eruption on the face. RESULTS: On examination, the patient was found to have acute retinal necrosis with white satellite lesions in the fundus of the left eye. An anterior chamber paracentesis and polymerase chain reaction confirmed the diagnosis of varicella-zoster virus. CONCLUSION: Varicella-zoster virus reactivation after shingles vaccination may predispose both immunocompetent and immunocompromised individuals to herpes-zoster ophthalmicus, leading to acute retinal necrosis.


Subject(s)
Eye Infections, Viral/complications , Herpes Zoster Vaccine/adverse effects , Herpesvirus 3, Human/immunology , Retina/pathology , Retinal Necrosis Syndrome, Acute/etiology , Vaccination/adverse effects , Varicella Zoster Virus Infection/complications , Eye Infections, Viral/prevention & control , Eye Infections, Viral/virology , Humans , Immunocompromised Host , Male , Middle Aged , Retina/virology , Retinal Necrosis Syndrome, Acute/diagnosis , Varicella Zoster Virus Infection/prevention & control , Varicella Zoster Virus Infection/virology
12.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33180748

ABSTRACT

Congenital Zika syndrome (CZS) is associated with microcephaly and various neurological, musculoskeletal, and ocular abnormalities, but the long-term pathogenesis and postnatal progression of ocular defects in infants are not well characterized. Rhesus macaques are superior to rodents as models of CZS because they are natural hosts of the virus and share similar immune and ocular characteristics, including blood-retinal barrier characteristics and the unique presence of a macula. Using a previously described model of CZS, we infected pregnant rhesus macaques with Zika virus (ZIKV) during the late first trimester and characterized postnatal ocular development and evolution of ocular defects in 2 infant macaques over 2 years. We found that one of them exhibited colobomatous chorioretinal atrophic lesions with macular and vascular dragging as well as retinal thinning caused by loss of retinal ganglion neuron and photoreceptor layers. Despite these congenital ocular malformations, axial elongation and retinal development in these infants progressed at normal rates compared with healthy animals. The ZIKV-exposed infants displayed a rapid loss of ZIKV-specific antibodies, suggesting the absence of viral replication after birth, and did not show any behavioral or neurological defects postnatally. Our findings suggest that ZIKV infection during early pregnancy can impact fetal retinal development and cause congenital ocular anomalies but does not appear to affect postnatal ocular growth.


Subject(s)
Prenatal Exposure Delayed Effects/virology , Retina/embryology , Zika Virus Infection/metabolism , Animals , Blood-Retinal Barrier/virology , Female , Macaca/virology , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/virology , Retina/virology , Retinal Degeneration/virology , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/virology , Virus Replication , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/physiopathology
13.
Sci Rep ; 10(1): 17419, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060700

ABSTRACT

Changes in immune and coagulation systems and possible viral spread through the blood-brain barrier have been described in SARS-CoV-2 infection. In this study, we evaluated the possible retinal involvement and ocular findings in severe COVID-19 pneumonia patients. A cross-sectional study was conducted on 46 patients affected by severe COVID-19 who were hospitalized in one intensive care unit (ICU) and in two infectious disease wards, including bedside eye screening, corneal sensitivity assessment and retinography. A total of 43 SARS-CoV-2-positive pneumonia patients affected with COVID-19 pneumonia were included, including 25 males and 18 females, with a median age of 70 years [IQR 59-78]. Except for one patient with unilateral posterior chorioretinitis of opportunistic origin, of whom aqueous tap was negative for SARS-CoV-2, no further retinal manifestation related to COVID-19 infection was found in our cohort. We found 3 patients (7%) with bilateral conjunctivitis in whom PCR analysis on conjunctival swabs provided negative results for SARS-CoV-2. No alterations in corneal sensitivity were found. We demonstrated the absence of retinal involvement in SARS-CoV-2 pneumonia patients. Ophthalmologic evaluation in COVID-19, particularly in patients hospitalized in an ICU setting, may be useful to reveal systemic co-infections by opportunistic pathogens.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Retina/pathology , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Conjunctivitis/complications , Conjunctivitis/pathology , Conjunctivitis/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Humans , Hypertensive Retinopathy/complications , Hypertensive Retinopathy/diagnosis , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Retina/virology , SARS-CoV-2 , Severity of Illness Index
20.
Ocul Immunol Inflamm ; 28(8): 1301-1304, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32946292

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 10 (SARS-CoV-2). Recent studies demonstrated not only retinal impairments but also detected SARS-CoV-2 in the retina of patients with COVID-19. Purpose: This letter discusses the retinal tropism of SARS-CoV-2, describing possible routes for this coronavirus to reach the retina and cellular mechanisms involved in the retinal cell infection. Conclusions: Determining how SARS-CoV-2 can affect the retinal tissue is essential for the development of new therapeutic strategies and preventive measures, as well as for understanding the possible relationship between COVID-19 damage to the retina and to the brain.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Eye Infections, Viral/virology , Pneumonia, Viral/virology , Retina/virology , Viral Tropism , COVID-19 , Coronavirus Infections/epidemiology , Eye Infections, Viral/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...