Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.411
Filter
1.
PLoS One ; 19(5): e0300584, 2024.
Article in English | MEDLINE | ID: mdl-38709779

ABSTRACT

Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Transducin , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice , Transducin/metabolism , Transducin/genetics , Retina/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics
2.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38739438

ABSTRACT

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Subject(s)
Citric Acid Cycle , Glycolysis , Oxidative Phosphorylation , Retina , Animals , Mice , Retina/metabolism , Energy Metabolism , Metabolomics , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/metabolism
3.
Proc Biol Sci ; 291(2023): 20232708, 2024 May.
Article in English | MEDLINE | ID: mdl-38808443

ABSTRACT

The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.


Subject(s)
Retinal Cone Photoreceptor Cells , Rod Opsins , Visual Cortex , Humans , Rod Opsins/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Visual Cortex/physiology , Adult , Electroretinography , Evoked Potentials, Visual , Female , Male , Young Adult , Photic Stimulation
4.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727583

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Subject(s)
Carrier Proteins , Disease Models, Animal , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa , Animals , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense , Cell Survival , Alleles , Gene Deletion , Thioredoxins/genetics , Thioredoxins/metabolism , Retinal Pigment Epithelium/metabolism
5.
J Pineal Res ; 76(3): e12951, 2024 04.
Article in English | MEDLINE | ID: mdl-38572848

ABSTRACT

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Subject(s)
Melatonin , Animals , Melatonin/metabolism , Neuroprotection , Retina/metabolism , Receptors, Melatonin/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Mammals/metabolism
6.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652563

ABSTRACT

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.


Subject(s)
Organoids , Orphan Nuclear Receptors , Retinal Rod Photoreceptor Cells , Humans , Organoids/metabolism , Organoids/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retina/metabolism , Retina/pathology , Retina/growth & development , Cell Differentiation , Light Signal Transduction/genetics , Single-Cell Analysis
7.
Cell Rep ; 43(5): 114143, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38676924

ABSTRACT

Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function. Bulk visual chromophore regeneration in RPE-KO mice is 15-fold slower than in controls, accounting for their delayed rod dark adaptation and protection against retinal phototoxicity, whereas MG-KO mice have normal bulk visual chromophore regeneration and retinal light damage susceptibility. Cone pigment regeneration is significantly impaired in RPE-KO mice but mildly affected in MG-KO mice, disclosing an unexpectedly strong reliance of cone photoreceptors on the RPE-based visual cycle. These data reveal a dominant role for RPE-CRALBP in supporting rod and cone function and highlight the importance of RPE cell targeting for CRALBP gene therapies.


Subject(s)
Carrier Proteins , Mice, Knockout , Retinal Cone Photoreceptor Cells , Retinal Pigment Epithelium , Animals , Retinal Pigment Epithelium/metabolism , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Retinal Cone Photoreceptor Cells/metabolism , Ependymoglial Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Pigments/metabolism
8.
Neurobiol Dis ; 194: 106463, 2024 May.
Article in English | MEDLINE | ID: mdl-38485095

ABSTRACT

Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.


Subject(s)
Orphan Nuclear Receptors , Retina , Mice , Animals , Humans , Orphan Nuclear Receptors/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Cell Differentiation , Gene Expression Regulation
9.
Dev Biol ; 511: 39-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548147

ABSTRACT

The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.


Subject(s)
Retina , Retinal Ganglion Cells , Animals , Chick Embryo , Retinal Ganglion Cells/cytology , Retina/embryology , Retinal Cone Photoreceptor Cells/metabolism , Chickens , Neurogenesis/physiology , Fibroblast Growth Factor 8/metabolism , Fibroblast Growth Factor 8/genetics , In Situ Hybridization, Fluorescence , Fovea Centralis/embryology , Visual Acuity , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/cytology , Gene Expression Regulation, Developmental
10.
J Cell Sci ; 137(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38477343

ABSTRACT

Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.


Subject(s)
Actins , Zebrafish , Animals , Actins/metabolism , Photoreceptor Cells/metabolism , Retina , Retinal Cone Photoreceptor Cells/metabolism , Photoreceptor Cells, Vertebrate
11.
Mol Ther ; 32(5): 1445-1460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504520

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.


Subject(s)
Cadherin Related Proteins , Cadherins , Disease Models, Animal , Genetic Therapy , Nerve Tissue Proteins , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Retinal Rod Photoreceptor Cells , Animals , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Cadherins/genetics , Cadherins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/etiology , Humans , Genetic Therapy/methods , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Macular Degeneration/metabolism
12.
Cell Rep Med ; 5(4): 101459, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38518771

ABSTRACT

Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.


Subject(s)
Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Animals , Humans , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/therapy , Retinal Cone Photoreceptor Cells/metabolism , Disease Models, Animal
13.
Genome Res ; 34(2): 243-255, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38355306

ABSTRACT

Dozens of variants in the gene for the homeodomain transcription factor (TF) cone-rod homeobox (CRX) are linked with human blinding diseases that vary in their severity and age of onset. How different variants in this single TF alter its function in ways that lead to a range of phenotypes is unclear. We characterized the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in mouse retina explants carrying knock-ins of two variants, one in the DNA-binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation in these mutant Crx retinas corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, and p.E168d2 has distinct effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are derepressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci are partially predictive of episomal MPRA activity, and distal elements whose accessibility increases later in retinal development are enriched for CREs with silencer activity. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers while having a qualitatively different impact on silencers.


Subject(s)
Homeodomain Proteins , Trans-Activators , Animals , Humans , Mice , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Regulatory Sequences, Nucleic Acid , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics
14.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38297980

ABSTRACT

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Subject(s)
Cone-Rod Dystrophies , Tubulin , Humans , Mice , Animals , Tubulin/genetics , Tubulin/metabolism , Cone-Rod Dystrophies/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Mutation
15.
J Vis Exp ; (203)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38345250

ABSTRACT

Transplantation of photoreceptor cells and retinal pigment epithelial (RPE) cells provide a potential therapy for retinal degeneration diseases. Subretinal transplantation of therapeutic donor cells into mouse recipients is challenging due to the limited surgical space allowed by the small volume of the mouse eye. We developed a trans-scleral surgical transplantation platform with direct transpupillary vision guidance to facilitate the subretinal delivery of exogenous cells in mouse recipients. The platform was tested using retinal cell suspensions and three-dimensional retinal sheets collected from rod-rich Rho::EGFP mice and cone-rich OPN1LW-EGFP;NRL-/- mice, respectively. Live/dead assay showed low cell mortality for both forms of donor cells. Retinal grafts were successfully delivered into the subretinal space of a mouse model of retinal degeneration, Rd1/NS, with minimum surgical complications as detected by multimodal confocal scanning laser ophthalmoscope (cSLO) imaging. Two months post-transplantation, histological staining demonstrated evidence of advanced maturation of the retinal grafts into 'adult' rods and cones (by robust Rho::EGFP, S-opsin, and OPN1LW:EGFP expression, respectively) in the subretinal space. Here, we provide a surgical platform that can enable highly accurate subretinal delivery with a low rate of complications in mouse recipients. This technique offers precision and relative ease of skill acquisition. Furthermore, the technique could be used not only for studies of subretinal cell transplantation but also for other intraocular therapeutic studies including gene therapies.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/surgery , Retinal Degeneration/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Cell Transplantation/methods , Vision, Ocular
16.
Sci Rep ; 14(1): 61, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167441

ABSTRACT

Animal models for retinal degeneration are essential for elucidating its pathogenesis and developing new therapeutic strategies in humans. N-methyl-N-nitrosourea (MNU) has been extensively used to construct a photoreceptor-specific degeneration model, which has served to unveil the molecular process of photoreceptor degeneration as well as the mechanisms regulating the protective responses of remaining cells. Methyl methanesulphonate (MMS), also known to cause photoreceptor degeneration, is considered a good alternative to MNU due to its higher usability; however, detailed pathophysiological processes after MMS treatment remain uncharacterized. Here, we analyzed the time course of photoreceptor degeneration, Müller glial proliferation, and expression of secretory factors after MNU and MMS treatments in rats. While the timing of rod degeneration was similar between the treatments, we unexpectedly found that cones survived slightly longer after MMS treatment. Müller glia reentered the cell cycle at a similar timing after the two treatments; however, the G1/S transition occurred earlier after MMS treatment. Moreover, growth factors such as FGF2 and LIF were more highly upregulated in the MMS model. These data suggest that comparative analyses of the two injury models may be beneficial for understanding the complex regulatory mechanisms underlying the proliferative response of Müller glia.


Subject(s)
Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Alkylating Agents/toxicity , Neuroglia/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Disease Models, Animal
17.
Transl Vis Sci Technol ; 13(1): 18, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38241039

ABSTRACT

Purpose: Canine models of inherited retinal degeneration are used for proof of concept of emerging gene and cell-based therapies that aim to produce functional restoration of cone-mediated vision. We examined functional magnetic resonance imaging (MRI) measures of the postretinal response to cone-directed stimulation in wild-type (WT) dogs, and in three different retinal disease models. Methods: Temporal spectral modulation of a uniform field of light around a photopic background was used to target the canine L/M (hereafter "L") and S cones and rods. Stimuli were designed to separately target the postreceptoral luminance (L+S) and chrominance (L-S) pathways, the rods, and all photoreceptors jointly (light flux). These stimuli were presented to WT, and mutant PDE6B-RCD1, RPGR-XLPRA2, and NPHP5-CRD2 dogs during pupillometry and functional MRI (fMRI). Results: Pupil responses in WT dogs to light flux, L+S, and rod-directed stimuli were consistent with responses being driven by cone signals alone. For WT animals, both luminance and chromatic (L-S) stimuli evoked fMRI responses in the lateral geniculate nucleus or visual cortex; RCD1 animals with predominant rod loss had similar responses. Responses to cone-directed stimulation were reduced in XLPRA2 and absent in CRD2. NPHP5 gene augmentation restored the cortical response to luminance stimulation in a CRD2 animal. Conclusions: Cone-directed stimulation during fMRI can be used to measure the integrity of luminance and chrominance responses in the dog visual system. The NPHP5-CRD2 model is appealing for studies of recovered cone function. Translational Relevance: fMRI assessment of cone-driven cortical response provides a tool to translate cell/gene therapies for vision restoration.


Subject(s)
Retinal Degeneration , Retinal Rod Photoreceptor Cells , Dogs , Animals , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retina/diagnostic imaging , Vision, Ocular , Retinal Degeneration/pathology
18.
PLoS Biol ; 22(1): e3002464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206904

ABSTRACT

Trichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs. M-opsin was observed before L-opsin expression during early human eye development, suggesting that M cones are generated before L cones. In adult human tissue, the early-developing central retina contained a mix of M and L cones compared to the late-developing peripheral region, which contained a high proportion of L cones. Retinoic acid (RA)-synthesizing enzymes are highly expressed early in retinal development. High RA signaling early was sufficient to promote M cone fate and suppress L cone fate in retinal organoids. Across a human population sample, natural variation in the ratios of M and L cone subtypes was associated with a noncoding polymorphism in the NR2F2 gene, a mediator of RA signaling. Our data suggest that RA promotes M cone fate early in development to generate the pattern of M and L cones across the human retina.


Subject(s)
Placenta , Tretinoin , Pregnancy , Adult , Animals , Humans , Female , Tretinoin/metabolism , Placenta/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Opsins/metabolism , Rod Opsins/genetics , Primates , Mammals/metabolism
19.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38060327

ABSTRACT

An arginine to cysteine substitution at amino acid position 203 (C203R) is the most common missense mutation in human cone opsin. Linked to color blindness and blue cone monochromacy (BCM), C203 is involved in a crucial disulfide bond required for proper folding. It has previously been postulated that expression of mutant C203R cone opsin exerts a toxic effect on cone photoreceptors, similar to some well-characterized missense mutations in rhodopsin that lead to protein misfolding. In this study, we generated and characterized a BCM mouse model carrying the equivalent C203R mutation (Opn1mwC198R Opn1sw-/-) to investigate the disease mechanism and develop a gene therapy approach for this disorder. Untreated Opn1mwC198R Opn1sw-/- cones phenocopied affected cones in human patients with the equivalent mutation, exhibiting shortened or absent cone outer segments and loss of function. We determined that gene augmentation targeting cones specifically yielded robust rescue of cone function and structure when Opn1mwC198R Opn1sw-/- mice were treated at early ages. Importantly, treated cones displayed elaborated outer segments and replenished expression of crucial cone phototransduction proteins. Interestingly, we were unable to detect OPN1MWC198R mutant opsin at any age. We believe this is the first proof-of-concept study exploring the efficacy of gene therapy in BCM associated with a C203R mutation.


Subject(s)
Color Vision Defects , Cone Opsins , Retinal Cone Photoreceptor Cells , Humans , Animals , Mice , Retinal Cone Photoreceptor Cells/metabolism , Mutation, Missense , Cone Opsins/genetics , Cone Opsins/metabolism , Rhodopsin/genetics
20.
Curr Biol ; 34(2): 260-272.e7, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38086388

ABSTRACT

Cytoskeletal rearrangements and crosstalk between microtubules and actin filaments are vital for living organisms. Recently, an abundantly present microtubule polymerase, CKAP5 (XMAP215 homolog), has been reported to play a role in mediating crosstalk between microtubules and actin filaments in the neuronal growth cones. However, the molecular mechanism of this process is unknown. Here, we demonstrate, in a reconstituted system, that CKAP5 enables the formation of persistent actin bundles templated by dynamically instable microtubules. We explain the templating by the difference in CKAP5 binding to microtubules and actin filaments. Binding to the microtubule lattice with higher affinity, CKAP5 enables the formation of actin bundles exclusively on the microtubule lattice, at CKAP5 concentrations insufficient to support any actin bundling in the absence of microtubules. Strikingly, when the microtubules depolymerize, actin bundles prevail at the positions predetermined by the microtubules. We propose that the local abundance of available CKAP5-binding sites in actin bundles allows the retention of CKAP5, resulting in persisting actin bundles. In line with our observations, we found that reducing CKAP5 levels in vivo results in a decrease in actin-microtubule co-localization in growth cones and specifically decreases actin intensity at microtubule plus ends. This readily suggests a mechanism explaining how exploratory microtubules set the positions of actin bundles, for example, in cytoskeleton-rich neuronal growth cones.


Subject(s)
Actins , Microtubules , Actins/metabolism , Microtubules/metabolism , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Retinal Cone Photoreceptor Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...