Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.685
Filter
1.
Nat Commun ; 15(1): 4756, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834544

ABSTRACT

Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.


Subject(s)
Peripherins , Rhodopsin , Peripherins/genetics , Peripherins/metabolism , Animals , Rhodopsin/genetics , Rhodopsin/metabolism , Mice , Humans , Disease Models, Animal , Down-Regulation , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Oligonucleotides, Antisense/genetics , Retina/metabolism , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/therapy , Mice, Inbred C57BL , Mutation , Female , Gene Knock-In Techniques , Male
2.
Invest Ophthalmol Vis Sci ; 65(6): 5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833260

ABSTRACT

Purpose: The purpose of this study was to evaluate self-reported functional vision (FV) and the impact of vision loss in patients with USH2A-associated retinal degeneration using a patient-reported outcome (PRO) measure, the Michigan Retinal Degeneration Questionnaire (MRDQ), to correlate MRDQ scores with well-established visual function measurements. Design: An observational cross-sectional study (n = 93) of participants who had Usher Syndrome Type 2 (USH2, n = 55) or autosomal recessive non-syndromic retinitis pigmentosa (ARRP; n = 38) associated with biallelic variants in the USH2A gene. Methods: The study protocol was approved by all ethics boards and informed consent was obtained from each participant. Participants completed the MRDQ at the 48-month study follow-up visit. Disease duration was self-reported by participants. One-way ANOVA was used to compare subgroups (clinical diagnosis, age, disease duration, and full-field stimulus threshold [FST] Blue-Red mediation) on mean scores per domain. Spearman correlation coefficients were used to assess associations between MRDQ domains and visual/retinal function assessments. Results: Of the study sample, 58% were female participants and the median disease duration was 13 years. MRDQ domains were sensitive to differences between subgroups of clinical diagnosis, age, disease duration, and FST Blue-Red mediation. MRDQ domains correlated with static perimetry, microperimetry, full-field stimulus testing, and best-corrected visual acuity (BCVA). Conclusions: Self-reported FV measured by the MRDQ, when applied to USH2 and ARRP participants, had good distributional characteristics and correlated well with visual function tests. MRDQ adds a new dimension of understanding on vision-related functioning and establishes this PRO tool as an informative measure in evaluating USH2A outcomes.


Subject(s)
Extracellular Matrix Proteins , Self Report , Usher Syndromes , Visual Acuity , Humans , Female , Male , Cross-Sectional Studies , Middle Aged , Visual Acuity/physiology , Extracellular Matrix Proteins/genetics , Adult , Usher Syndromes/genetics , Usher Syndromes/physiopathology , Usher Syndromes/diagnosis , Surveys and Questionnaires , Retinal Degeneration/genetics , Retinal Degeneration/physiopathology , Retinal Degeneration/diagnosis , Aged , Young Adult , Quality of Life , Adolescent , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/physiopathology , Retinitis Pigmentosa/diagnosis
3.
PLoS One ; 19(5): e0302742, 2024.
Article in English | MEDLINE | ID: mdl-38768144

ABSTRACT

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Subject(s)
Disease Models, Animal , Lycium , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate , Plant Extracts , Retinal Degeneration , Zeaxanthins , Animals , Lycium/chemistry , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zeaxanthins/pharmacology , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Electroretinography , Retina/drug effects , Retina/pathology , Retina/metabolism , Vision, Ocular/drug effects , Male , Xanthophylls/pharmacology
4.
Nat Commun ; 15(1): 4481, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802397

ABSTRACT

Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.


Subject(s)
Blindness , Retina , Visual Prosthesis , Retina/diagnostic imaging , Retina/physiology , Animals , Blindness/therapy , Blindness/physiopathology , Retinal Degeneration/therapy , Retinal Degeneration/diagnostic imaging , Ultrasonic Waves , Humans , Neurons/physiology , Ultrasonography/methods , Vision, Ocular/physiology
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731938

ABSTRACT

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Subject(s)
Retinal Degeneration , Animals , Mice , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Disease Models, Animal , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Retina/metabolism , Retina/drug effects , Retina/pathology
6.
Acta Neuropathol Commun ; 12(1): 76, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755736

ABSTRACT

Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.


Subject(s)
Microglia , Nucleotidyltransferases , Quercetin , Retinal Degeneration , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Quercetin/pharmacology , Quercetin/analogs & derivatives , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Mice , Nucleotidyltransferases/metabolism , Mice, Inbred C57BL , DNA/metabolism , Cell Line , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/metabolism , Male
7.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38719453

ABSTRACT

Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.


Subject(s)
Electric Stimulation , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retinal Degeneration/physiopathology , Mice, Inbred C57BL , Retinal Bipolar Cells/physiology , Patch-Clamp Techniques , Visual Pathways/physiology , Visual Pathways/physiopathology , Neural Inhibition/physiology , Female , Male , Retina/physiology , Amacrine Cells/physiology
8.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791338

ABSTRACT

Greg Lemke's laboratory was one of the pioneers of research into the TAM family of receptor tyrosine kinases (RTKs). Not only was Tyro3 cloned in his laboratory, but his group also extensively studied mice knocked out for individual or various combinations of the TAM RTKs Tyro3, Axl, and Mertk. Here we primarily focus on one of the paralogs-MERTK. We provide a historical perspective on rodent models of loss of Mertk function and their association with retinal degeneration and blindness. We describe later studies employing mouse genetics and the generation of newer knockout models that point out incongruencies with the inference that loss of MERTK-dependent phagocytosis is sufficient for severe, early-onset photoreceptor degeneration in mice. This discussion is meant to raise awareness with regards to the limitations of the original Mertk knockout mouse model generated using 129 derived embryonic stem cells and carrying 129 derived alleles and the role of these alleles in modifying Mertk knockout phenotypes or even displaying Mertk-independent phenotypes. We also suggest molecular approaches that can further Greg Lemke's scintillating legacy of dissecting the molecular functions of MERTK-a protein that has been described to function in phagocytosis as well as in the negative regulation of inflammation.


Subject(s)
Mice, Knockout , Phagocytosis , c-Mer Tyrosine Kinase , Animals , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Mice , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Disease Models, Animal , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Humans , Inflammation/genetics , Inflammation/metabolism
9.
Vis Neurosci ; 41: E002, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38725382

ABSTRACT

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Degeneration , Sciuridae , Tomography, Optical Coherence , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/drug effects , Disease Models, Animal , Intravitreal Injections , Ophthalmoscopy , Nitroprusside/pharmacology , Female , Male
10.
Sci Rep ; 14(1): 10498, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714794

ABSTRACT

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Subject(s)
AC133 Antigen , Animals , Mice , AC133 Antigen/metabolism , AC133 Antigen/genetics , Mice, Knockout , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism , Rhodopsin/genetics
11.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785932

ABSTRACT

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.


Subject(s)
Apoptosis , Homeostasis , Reperfusion Injury , Retina , Retinal Ganglion Cells , alpha-MSH , Animals , alpha-MSH/pharmacology , alpha-MSH/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Apoptosis/drug effects , Retina/metabolism , Retina/drug effects , Retina/pathology , Homeostasis/drug effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Male , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Disease Models, Animal , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy
12.
Biochem Biophys Res Commun ; 719: 150048, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38763044

ABSTRACT

Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Microglia , Retinal Degeneration , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Mice , Microglia/metabolism , Microglia/pathology , Retina/metabolism , Retina/pathology
13.
Biomed Pharmacother ; 174: 116538, 2024 May.
Article in English | MEDLINE | ID: mdl-38579401

ABSTRACT

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Subject(s)
Ependymoglial Cells , Glaucoma , Histone Deacetylase Inhibitors , Histone Deacetylases , Mice, Inbred C57BL , Oxidative Stress , Animals , Oxidative Stress/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Histone Deacetylase Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice , Histone Deacetylases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612560

ABSTRACT

Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.


Subject(s)
Macular Degeneration , Retinal Degeneration , Retinitis Pigmentosa , Surgeons , Humans , Adult , Animals , Rats , Retina
15.
BMC Ophthalmol ; 24(1): 149, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575892

ABSTRACT

BACKGROUND: Knobloch syndrome (KNO, OMIM # 267,750) is a rare ciliopathy group sydrome characterized by a collagen synthesis disorder. It represents an uncommon cause of pediatric retinal detachment. This report presents two cases with different COL18A1 gene mutations, complicated by retinal detachment. CASE PRESENTATION: Both cases exhibited high myopia and various degrees of occipital skull defect. The first case, a female, had bilateral congenital retinal detachment, posterior embryotoxon, and strabismus. The second case, a male, had unilateral congenital retinal detachment and neuromotor developmental delay. The first case, diagnosed in the early months of life, underwent successful retinal reattachment surgery. However, surgery was not performed on the second case, who presented with late-stage unilateral retinal detachment and pre-phthisis. CONCLUSIONS: The report describes two patients with Knobloch syndrome, one of whom responded favorably to surgery for retinal detachment in both eyes. Successful anatomical results were achieved with early surgical interventions. It is essential to recognize the phenotypic and genetic heterogeneity within KNO.


Subject(s)
Encephalocele , Retinal Degeneration , Retinal Detachment , Child , Female , Humans , Male , Mutation , Retina , Retinal Degeneration/genetics , Retinal Detachment/diagnosis , Retinal Detachment/genetics , Retinal Detachment/surgery , Retinal Detachment/congenital
16.
Invest Ophthalmol Vis Sci ; 65(4): 3, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558093

ABSTRACT

Purpose: To describe and evaluate a novel method to determine the validity of measurements made using cycle-by-cycle (CxC) recording techniques in patients with advanced retinal degenerations (RD) having low-amplitude flicker electroretinogram (ERG) responses. Methods: The method extends the original CxC recording algorithm introduced by Sieving et al., retaining the original recording setup and the preliminary analysis of raw data. Novel features include extended use of spectrum analysis, reduction of errors due to known sources, and a comprehensive statistical assessment using three different tests. The method was applied to ERG recordings from seven patients with RD and two patients with CNGB3 achromatopsia. Results: The method was implemented as a Windows application to processes raw data obtained from a commercial ERG system, and it features a computational toolkit for statistical assessment of ERG recordings with amplitudes as low as 1 µV, commonly found in advanced RD patients. When recorded using conditions specific for eliciting cone responses, none of the CNGB3 patients had a CxC validated response, indicating that no signal artifacts were present with our recording conditions. A comparison of the presented method with conventional 30 Hz ERG was performed. Bland-Altman plots indicated good agreement (mean difference, -0.045 µV; limits of agreement, 0.193 to -0.282 µV) between the resulting amplitudes. Within-session test-retest variability was 15%, comparing favorably to the variability of standard ERG amplitudes. Conclusions: This novel method extracts highly reliable clinical recordings of low-amplitude flicker ERGs and effectively detects artifactual responses. It has potential value both as a cone outcome variable and planning tool in clinical trials on natural history and treatment of advanced RDs.


Subject(s)
Color Vision Defects , Retinal Degeneration , Humans , Electroretinography/methods , Retinal Degeneration/diagnosis , Retinal Cone Photoreceptor Cells/physiology , Photic Stimulation , Retina/physiology
17.
Exp Eye Res ; 242: 109879, 2024 May.
Article in English | MEDLINE | ID: mdl-38570182

ABSTRACT

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Subject(s)
Disease Models, Animal , Electroretinography , Iodates , Mice, Inbred C57BL , Retinal Degeneration , Tamoxifen , Tomography, Optical Coherence , Animals , Iodates/toxicity , Mice , Tomography, Optical Coherence/methods , Tamoxifen/pharmacology , Retinal Degeneration/prevention & control , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Real-Time Polymerase Chain Reaction , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Selective Estrogen Receptor Modulators/pharmacology , RNA, Messenger/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Rod Opsins/metabolism
18.
Front Immunol ; 15: 1374617, 2024.
Article in English | MEDLINE | ID: mdl-38665911

ABSTRACT

Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.


Subject(s)
Disease Models, Animal , Lymphocytic choriomeningitis virus , Proteomics , Retinal Degeneration , Animals , Mice , Proteomics/methods , Retinal Degeneration/immunology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Lymphocytic choriomeningitis virus/immunology , Mice, Inbred C57BL , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Tandem Mass Spectrometry , Proteome , Retina/immunology , Retina/metabolism , Retina/pathology , Chromatography, Liquid , Choroid/immunology , Choroid/pathology , Choroid/metabolism
19.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38688030

ABSTRACT

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Subject(s)
Cyclic GMP , Neuroprotective Agents , Retinal Rod Photoreceptor Cells , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Retinal Degeneration/drug therapy , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/metabolism , Structure-Activity Relationship
20.
Nat Commun ; 15(1): 3562, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670966

ABSTRACT

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.


Subject(s)
Machine Learning , Metabolomics , Retinal Degeneration , Retinitis Pigmentosa , Stargardt Disease , Humans , Metabolomics/methods , Diagnosis, Differential , Retinal Degeneration/diagnosis , Retinal Degeneration/blood , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Male , Female , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/blood , Retinitis Pigmentosa/metabolism , Stargardt Disease/genetics , Adult , Middle Aged , Adolescent , Young Adult , Biomarkers/blood , Metabolome , Child , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/blood , Cone-Rod Dystrophies/metabolism , Mass Spectrometry , Macular Degeneration/blood , Macular Degeneration/diagnosis , Macular Degeneration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...