Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
J Hazard Mater ; 473: 134586, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776811

ABSTRACT

The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.


Subject(s)
Light , Mice, Inbred C57BL , Nanoparticles , Oxidative Stress , Polystyrenes , Retina , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Polystyrenes/toxicity , Polystyrenes/chemistry , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Nanoparticles/toxicity , Oxidative Stress/drug effects , Retina/drug effects , Retina/radiation effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Reactive Oxygen Species/metabolism , Mice , Electroretinography , Male
2.
Vis Neurosci ; 41: E002, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38725382

ABSTRACT

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Degeneration , Sciuridae , Tomography, Optical Coherence , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/drug effects , Disease Models, Animal , Intravitreal Injections , Ophthalmoscopy , Nitroprusside/pharmacology , Female , Male
3.
Exp Eye Res ; 242: 109879, 2024 May.
Article in English | MEDLINE | ID: mdl-38570182

ABSTRACT

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Subject(s)
Disease Models, Animal , Electroretinography , Iodates , Mice, Inbred C57BL , Retinal Degeneration , Tamoxifen , Tomography, Optical Coherence , Animals , Iodates/toxicity , Mice , Tomography, Optical Coherence/methods , Tamoxifen/pharmacology , Retinal Degeneration/prevention & control , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Real-Time Polymerase Chain Reaction , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Selective Estrogen Receptor Modulators/pharmacology , RNA, Messenger/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Rod Opsins/metabolism
4.
Transl Vis Sci Technol ; 13(2): 10, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38349778

ABSTRACT

Purpose: Geographic atrophy (GA) is an advanced form of dry age-related macular degeneration with multifactorial etiology and no well-established treatment. A model recapitulating the hallmarks would serve as a key to understanding the underlying pathologic mechanisms better. In this report, we further characterized our previously reported subretinal sodium iodate model of GA. Methods: Retinal degeneration was induced in rats (6-8 weeks old) by subretinal injections of NaIO3 as described previously. Animals were sacrificed at 3, 8 and 12 weeks after injection and eyes were fixed or cryopreserved. Some choroids were processed as flatmounts while other eyes were cryopreserved, sectioned, and immunolabeled with a panel of antibodies. Finally, some eyes were prepared for transmission electron microscopic (TEM) analysis. Results: NaIO3 subretinal injection resulted in a well-defined focal area of retinal pigment epithelium (RPE) degeneration surrounded by viable RPE. These atrophic lesions expanded over time. RPE morphologic changes at the border consisted of hypertrophy, multilayering, and the possible development of a migrating phenotype. Immunostaining of retinal sections demonstrated external limiting membrane descent, outer retinal tubulation (ORT), and extension of Müller cells toward RPE forming a glial membrane in the subretinal space of the atrophic area. TEM findings demonstrated RPE autophagy, cellular constituents of ORT, glial membranes, basal laminar deposits, and defects in Bruch's membrane. Conclusions: In this study, we showed pathologic features of a rodent model resembling human GA in a temporal order through histology, immunofluorescence, and TEM analysis and gained insights into the cellular and subcellular levels of the GA-like phenotypes. Translational Relevance: Despite its acute nature, the expansion of atrophy and the GA-like border in this rat model makes it ideal for studying disease progression and provides a treatment window to test potential therapeutics for GA.


Subject(s)
Geographic Atrophy , Retinal Degeneration , Humans , Rats , Animals , Retina , Retinal Pigment Epithelium/pathology , Iodates , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology
5.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38336183

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Subject(s)
Lycium , Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Lycium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Disease Models, Animal
6.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303097

ABSTRACT

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Subject(s)
Deep Learning , Retinal Degeneration , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology , Tomography, Optical Coherence/methods , N-Methylaspartate/toxicity , Rats, Long-Evans , Retina/pathology , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology
7.
Free Radic Biol Med ; 214: 42-53, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309537

ABSTRACT

The degeneration of retinal pigment epithelium (RPE) plays an important role in the development of age-related macular degeneration (AMD). However, the underlying mechanism remains elusive. In this study, we identified that ZIP8, a metal-ion transporter, plays a crucial role in the degeneration of RPE cells mediated by ferroptosis. ZIP8 was found to be upregulated in patients with AMD through transcriptome analysis. Upregulated ZIP8 was also observed in both oxidative-stressed RPE cells and AMD mouse model. Importantly, knockdown of ZIP8 significantly inhibited ferroptosis in RPE cells induced by sodium iodate-induced oxidative stress. Blocking ZIP8 with specific antibodies reversed RPE degeneration and restored retinal function, improving visual loss in a mouse model of NaIO3-induced. Interestingly, the modification of the N-glycosylation sites N40, N72 and N88, but not N273, was essential for the intracellular iron accumulation mediated by ZIP8, which further led to increased lipid peroxidation and RPE death. These findings highlight the critical role of ZIP8 in RPE ferroptosis and provide a potential target for the treatment of diseases associated with retinal degeneration, including AMD.


Subject(s)
Ferroptosis , Macular Degeneration , Retinal Degeneration , Animals , Humans , Mice , Disease Models, Animal , Ferroptosis/genetics , Macular Degeneration/genetics , Retina , Retinal Degeneration/chemically induced , Retinal Degeneration/genetics , Retinal Degeneration/prevention & control , Retinal Pigments
8.
Sci Rep ; 14(1): 61, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167441

ABSTRACT

Animal models for retinal degeneration are essential for elucidating its pathogenesis and developing new therapeutic strategies in humans. N-methyl-N-nitrosourea (MNU) has been extensively used to construct a photoreceptor-specific degeneration model, which has served to unveil the molecular process of photoreceptor degeneration as well as the mechanisms regulating the protective responses of remaining cells. Methyl methanesulphonate (MMS), also known to cause photoreceptor degeneration, is considered a good alternative to MNU due to its higher usability; however, detailed pathophysiological processes after MMS treatment remain uncharacterized. Here, we analyzed the time course of photoreceptor degeneration, Müller glial proliferation, and expression of secretory factors after MNU and MMS treatments in rats. While the timing of rod degeneration was similar between the treatments, we unexpectedly found that cones survived slightly longer after MMS treatment. Müller glia reentered the cell cycle at a similar timing after the two treatments; however, the G1/S transition occurred earlier after MMS treatment. Moreover, growth factors such as FGF2 and LIF were more highly upregulated in the MMS model. These data suggest that comparative analyses of the two injury models may be beneficial for understanding the complex regulatory mechanisms underlying the proliferative response of Müller glia.


Subject(s)
Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Alkylating Agents/toxicity , Neuroglia/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Disease Models, Animal
9.
Glia ; 72(4): 759-776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225726

ABSTRACT

Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.


Subject(s)
Cobalt , Retinal Degeneration , Animals , Xenopus laevis/physiology , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retina , Regeneration/physiology , Cell Proliferation , Neuroglia/metabolism
10.
FEBS J ; 291(5): 986-1007, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38037211

ABSTRACT

Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.


Subject(s)
Neuroprotective Agents , Retinal Degeneration , Animals , Mice , Apoptosis , Neuroprotective Agents/pharmacology , Photoreceptor Cells , Retinal Degeneration/chemically induced , Retinal Degeneration/genetics , STAT3 Transcription Factor/genetics
11.
Exp Eye Res ; 239: 109772, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158173

ABSTRACT

Sodium iodate (NaIO3) is a commonly used model for age-related macular degeneration (AMD), but its rapid and severe induction of retinal pigment epithelial (RPE) and photoreceptor degeneration can lead to the premature dismissal of potentially effective therapeutics. Additionally, little is known about how sex and age affect the retinal response to NaIO3. This study aims to establish a less severe yet reproducible regimen by testing low doses of NaIO3 while considering age- and sex-related effects, enabling a broader range of therapeutic evaluations. In this study, young (3-5 months) and old (18-24 months) male and female C57Bl/6J mice were given an intraperitoneal (IP) injection of 15, 20, or 25 mg/kg NaIO3. Damage assessment one week post-injection included in vivo imaging, histological examination, and qRT-PCR analysis. The results revealed that young mice showed no damage at 15 mg/kg IP NaIO3, with varying degrees of damage observed at 20 mg/kg. At 25 mg/kg, most young mice displayed widespread retinal damage, with females exhibiting less retinal thinning than males. In contrast, older mice at 20 and 25 mg/kg displayed a more patchy degeneration pattern, outer retinal undulations, and greater variability in degeneration than the young mice. The most effective model for minimizing damage while maintaining consistency utilizes young female mice injected with 25 mg/kg NaIO3. The observed sex- and age-related differences underscore the importance of considering these variables in research, aligning with the National Institutes of Health's guidance. While the model does not fully replicate the complexity of AMD, these findings enhance its utility as a valuable tool for testing RPE/photoreceptor protective or replacement therapies.


Subject(s)
Macular Degeneration , Retinal Degeneration , Female , Male , Mice , Animals , Retina/pathology , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Iodates/toxicity , Mice, Inbred C57BL , Retinal Pigment Epithelium/pathology , Disease Models, Animal
12.
FASEB J ; 37(11): e23250, 2023 11.
Article in English | MEDLINE | ID: mdl-37819682

ABSTRACT

Vision loss and blindness are frequently caused by photoreceptor degeneration, for example in age-related macular degeneration and retinitis pigmentosa. However, there is no effective medicine to treat these photoreceptor degeneration-related diseases. Cell senescence is a common phenotype in many diseases; however, few studies have reported whether it occurs in photoreceptor degeneration diseases. Herein, we identified that cell senescence is associated with photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU, a commonly used photoreceptor degeneration model), presented as increased senescence-associated ß-galactosidase activity, DNA damage, oxidative stress and inflammation-related cytokine Interleukin 6 (IL6), and upregulation of cyclin p21 or p16. These results suggested that visual function might be protected using anti-aging treatment. Furthermore, Hyperoside is reported to help prevent aging in various organs. In this study, we showed that Hyperoside, delivered intravitreally, alleviated photoreceptor cell senescence and ameliorated the functional and morphological degeneration of the retina in vivo and in vitro. Importantly, Hyperoside attenuated the MNU-induced injury and aging of photoreceptors via AMPK-ULK1 signaling inhibition. Taken together, our results demonstrated that Hyperoside can prevent MNU-induced photoreceptor degeneration by inhibiting cell senescence via the AMPK-ULK1 pathway.


Subject(s)
AMP-Activated Protein Kinases , Retinal Degeneration , Animals , AMP-Activated Protein Kinases/metabolism , Apoptosis , Cellular Senescence , Disease Models, Animal , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control
13.
Sci Rep ; 13(1): 8380, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225720

ABSTRACT

It is important to explore the effective approaches to prevent dry age-related macular degeneration (AMD). In this study, significantly decreased full-field electroretinograms wave amplitudes and disordered retina structures were detected in rat retinas of sodium iodate induced dry AMD model. Six a- and b-wave amplitudes and the antioxidant activities were significantly increased, and the outer nuclear layer thickness was significantly improved in the rat retinas treated with the combination of Lactobacillus fermentum NS9 (LF) and aronia anthocyanidin extract (AAE) compared with the model. The effects were much better than the treatment with AAE alone. The proteomics analysis showed the expressions of α-, ß- and γ-crystallins were increased by 3-8 folds in AAE treated alone and by 6-11 folds in AAE + LF treatment compared with the model, which was further confirmed by immuno-blotting analysis. Analysis of gut microbial composition indicated that higher abundance of the genus Parasutterella and species P. excrementihominis was found in the AAE + LF treatment compared with the other groups. The results indicated that the combined treatment of AAE + LF is a potential way to prevent the retina degeneration which is significantly better than the AAE treated alone.


Subject(s)
Geographic Atrophy , Limosilactobacillus fermentum , Photinia , Retinal Degeneration , Animals , Rats , Anthocyanins/pharmacology , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Retina , Plant Extracts/pharmacology
14.
Phytomedicine ; 115: 154828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116386

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) refers to a group of progressive photoreceptor degenerative diseases. The activation of microglia has been reported to play an important role in the photoreceptor degeneration in RP retinal. Bujing Yishi tablets (BJYS), a Chinese herbal medicine, has been used to treat retinal diseases in China with desirable effect in improving visual function. However, the mechanisms underlying the efficacy of BJYS treatment in RP are not yet fully understood. PURPOSE: Based on the preliminary experiments, this study aimed to investigate the therapeutic mechanism involved in treating N-Methyl-N-Nitrosourea (MNU)-induced retinal degeneration of RP with BJYS. METHODS: To explore the efficacy of BJYS, a rat experimental RP model was established through intraperitoneal injection of MNU (50 mg/kg). Two experiment was carried out. After the treatment, we conducted H&E, TUNEL, retinal cytokine levels and IBA-1 expression in microglia to confirm the impact on RP model. The specific mechanism of action of BJYS tablet was assessed by western blot, real-time polymerase chain reaction (RT-PCR), and immunofluorescence to determine the mRNA and protein expression levels involved in clarifying the effectiveness of BJYS exerted through P2X7R/CX3CL1/CX3CR1 pathway. RESULTS: Significant alleviation of retinal morphological structure and photoreceptor degeneration by BJYS treatment was observed in the retinal of MNU-induced RP rats, BJYS prevented the reduction of ONL thickness and decreased the level of apoptotic cells in ONL. It also inhibited microglia overactivation and reduced retinal levels of IL-1ß, IL-6, TNF-α. In addition, BJYS decreased the protein expression and mRNA expression of P2X7, CX3CL1 and CX3CR1 and reduced the phosphorylation of p38 MAPK. CONCLUSION: In summary, this study suggested that BJYS treatment could alleviate photoreceptors degeneration of RP by inhibiting microglia overactivation and inflammation through the P2X7R/CX3CL1/CX3CR1 pathway. These effects suggest that BJYS tablets may serve as a promising oral therapeutic agent for RP.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Rats , Animals , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/metabolism , Photoreceptor Cells/metabolism , Retina , Retinal Degeneration/chemically induced , Cell Death , Nitrosourea Compounds/adverse effects , Nitrosourea Compounds/metabolism , Apoptosis , Disease Models, Animal , Chemokine CX3CL1/adverse effects , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/metabolism
15.
PLoS One ; 18(2): e0282174, 2023.
Article in English | MEDLINE | ID: mdl-36821627

ABSTRACT

We aimed to verify whether the intravitreal injection of small molecule compounds alone can create photoreceptor cells in mouse models of retinal degeneration. Primary cultured mouse Müller cells were stimulated in vitro with combinations of candidate compounds and the rhodopsin expression was measured on day 7 using polymerase chain reaction and immunostaining. We used 6-week-old N-methyl-N-nitrosourea-treated and 4-week-old rd10 mice as representative in vivo models of retinal degeneration. The optimal combination of compounds selected via in vitro screening was injected into the vitreous and the changes in rhodopsin expression were investigated on day 7 using polymerase chain reaction and immunostaining. The origin of rhodopsin-positive cells was also analyzed via lineage tracing and the recovery of retinal function was assessed using electroretinography. The in vitro mRNA expression of rhodopsin in Müller cells increased 30-fold, and 25% of the Müller cells expressed rhodopsin protein 7 days after stimulation with a combination of 4 compounds: transforming growth factor-ß inhibitor, bone morphogenetic protein inhibitor, glycogen synthase kinase 3 inhibitor, and γ-secretase inhibitor. The in vivo rhodopsin mRNA expression and the number of rhodopsin-positive cells in the outer retina were significantly increased on day 7 after the intravitreal injection of these 4 compounds in both N-methyl-N-nitrosourea-treated and rd10 mice. Lineage tracing in td-Tomato mice treated with N-methyl-N-nitrosourea suggested that the rhodopsin-positive cells originated from endogenous Müller cells, accompanied with the recovery of the rhodopsin-derived scotopic function. It was suggested that rhodopsin-positive cells generated by compound stimulation contributes to the recovery of retinal function impaired by degeneration.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Rhodopsin/genetics , Rhodopsin/metabolism , Intravitreal Injections , Methylnitrosourea/metabolism , Retina/metabolism , Disease Models, Animal , Electroretinography , RNA, Messenger/metabolism
16.
Free Radic Biol Med ; 194: 209-219, 2023 01.
Article in English | MEDLINE | ID: mdl-36493984

ABSTRACT

Age-related macular degeneration is a common cause of blindless among the aged, which can mainly be attributed to oxidative stress and dysregulated autophagy in retinal pigment epithelium cells. Lactate was reported to act as a signaling molecule and exerted beneficial effect against oxidative stress. This study aims to investigate the protective effect of lactate against oxidative stress-induced retinal degeneration. Here, H2O2-induced oxidative stress cell model and sodium iodate-induced mice retinal degeneration model were established. It was found that H2O2 inhibited cell viability in ARPE-19 cells and sodium iodate induced deterioration of retinal pigment epithelium as well as apoptosis in retina. Pretreatment with lactate alleviated oxidative stress-induced cell death and retinal degeneration. Molecularly, lactate activated autophagy by up-regulating the ratio of LC3II/I, increased formation of LC3 puncta and autophagic vacuole. Further, lactate prevented H2O2-induced mitochondrial fission and maintained mitochondrial function by alleviating H2O2-induced mitochondrial membrane potential disruption and intracellular ROS generation. In contrast, application of 3-methyladenine, an inhibitor of autophagy, effectively weakened the protective effect of lactate against oxidative stress in vivo and in vitro. Taken together, all data in this study indicate that lactate protects against oxidative stress-induced retinal degeneration and preserves mitochondrial function by activating autophagy.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Reactive Oxygen Species/metabolism , Lactic Acid/metabolism , Lactic Acid/pharmacology , Hydrogen Peroxide/metabolism , Oxidative Stress , Retinal Pigment Epithelium/metabolism , Autophagy
17.
BMJ Case Rep ; 15(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384882

ABSTRACT

A patient in her late 50s with antiphospholipid syndrome presented to general ophthalmology clinic for annual hydroxychloroquine retinopathy screening. She had taken 400 mg hydroxychloroquine daily for over a decade. She denied any visual changes and visual acuity was 20/20. Her examination and fundus photos were normal, but macular optical coherence tomography of the right eye demonstrated inner retinal atrophy and visual field tests revealed a corresponding paracentral scotoma, consistent with a prior cilioretinal artery occlusion. Prior testing from visits with other ophthalmologists revealed that this occlusion had occurred previously, but she had only been informed of not having hydroxychloroquine retinopathy. The possibility of vision loss prompted her to reconsider her prior decision to discontinue anticoagulation. This case demonstrates how anchoring bias may lead clinicians astray, and how the risk of blindness is a strong motivator for patients regarding anticoagulation.


Subject(s)
Antiphospholipid Syndrome , Cerebrovascular Disorders , Retinal Artery Occlusion , Retinal Degeneration , Female , Humans , Hydroxychloroquine/therapeutic use , Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/drug therapy , Retinal Artery Occlusion/diagnosis , Retinal Artery Occlusion/drug therapy , Retinal Artery Occlusion/etiology , Cerebrovascular Disorders/chemically induced , Blindness/chemically induced , Retinal Degeneration/chemically induced , Anticoagulants/therapeutic use , Arteries
18.
Doc Ophthalmol ; 145(1): 71-76, 2022 08.
Article in English | MEDLINE | ID: mdl-35691959

ABSTRACT

PURPOSE: To describe a case of presumed retinal lead poisoning. METHODS: Clinical examination, optical coherence tomography, fundus autofluorescence, fluorescein angiography, and electroretinography were used to study a 42-year-old male with the complaint of bilateral reduced vision following systemic lead poisoning. RESULTS: The fundus examination showed venous tortuosity, as well as macular atrophy, and pigmentary changes in his both eyes. Optical coherence tomography revealed retinal thinning, outer retinal and retinal pigment epithelium atrophy, as well as foveal schitic changes. Blue autofluorescence showed moderately hypoautofluorescence in peripapillary area of both eyes. Fluorescein angiogram showed a leopard-like pattern of hypo- and hyperfluorescence in the posterior pole. Electroretinogram showed a moderate reduction in photopic and scotopic responses. CONCLUSIONS: The most probable diagnosis of this case is early onset retinal lead poisoning.


Subject(s)
Lead Poisoning , Retinal Degeneration , Adult , Electroretinography , Fluorescein Angiography , Humans , Lead Poisoning/diagnosis , Male , Retinal Degeneration/chemically induced , Retinal Degeneration/diagnostic imaging , Tomography, Optical Coherence
19.
Medicina (Kaunas) ; 58(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35743998

ABSTRACT

Objective: This article aims to describe a unique case of didanosine-induced retinal degeneration that was discovered 11 years after the drug withdrawal. Case report: The patient is a 42-year-old woman with a medical history of HIV and hepatitis C virus since 2004. She has been prescribed antiretroviral therapy since then. For the first seven years (2004-2011), the patient was prescribed a combination therapy consisting of didanosine, efavirenz, and lamivudine. The protocol was changed to atripla (efavirenz, emtricitabine, and tenofovir) from 2011 to 2021. Recently (October 2021-January 2021), the patient was prescribed eviplera (rilpivirin, emtricitabine, and tenofovir). In addition, her past medical history revealed Gougerot-Sjogren syndrome and rheumatoid arthritis. She was prescribed hydroxychloroquine (HCQ) (2009-2021) at a dose of 400 mg daily. She had no vision complaint. Results: During her routine HCQ screening at the eye clinic, University Hospital Bretonneau, Tours, France, the widefield colour fundus photograph showed well-defined symmetric mid-peripheral areas of chorioretinal atrophy sparing the posterior pole of both eyes. Furthermore, the widefield fundus autofluorescence illustrated mid-peripheral round well-demarcation hypoautofluorescent areas of chorioretinal atrophy of both eyes. Conversely, the macular optical coherence tomography (OCT) was normal. Many of her drugs are known to be associated with retinopathy such as HCQ, tenofovir, efavirenz, and didanosine. Because our data corroborate peripheral retinal damage rather than posterior pole damage, this case report is compatible with didanosine-induced retinopathy rather than HCQ, efavirenz, or tenofovir retinal toxicity. Conclusions: All HIV patients who are presently or were previously on didanosine therapy should have their fundus examined utilising widefield fundus autofluorescence and photography.


Subject(s)
HIV Infections , Retinal Degeneration , Adult , Atrophy , Choroid Diseases , Didanosine/adverse effects , Emtricitabine/therapeutic use , Female , HIV Infections/complications , HIV Infections/drug therapy , Humans , Hydroxychloroquine/therapeutic use , Retinal Degeneration/chemically induced , Tenofovir/adverse effects , Tomography, Optical Coherence/methods
20.
Life Sci ; 300: 120570, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35469914

ABSTRACT

AIMS: The degeneration of retinal neurons which occurs in many neurodegenerative diseases of retina such as retinitis pigmentosa and aged-related macular degeneration, is a progressive phenomenon and leads to permanent visual disability. Aside from their economic and social impact, those who suffer from these diseases have a poor quality of life due to the lack of cures. Researchers have turned to stem cell therapies as a potential solution to this global health crisis. Mesenchymal stem cells (MSCs) and their paracrine agents such as conditioned medium (CM) and exosomes (Exo) have been applied to treat different retinal disorders. This study compared the therapeutic effects of human adipose mesenchymal stem cells (hADSCs) and their secretome on an in vivo model of sodium iodate retinal neurodegeneration. MAIN METHODS: We analyzed the expression of retinal cells' specific mRNAs by RT-PCR and proteins by immunostaining as well as performing visual cliff avoidance test as a functional evaluation technique. There were four therapeutic groups in this study: hADSC, hADSC-CM, hADSC-Exo and hADSC-Exo + CM. KEY FINDINGS: Although all groups showed different therapeutic effects on various retinal cells, the results of hADSC-CM were most striking, especially in terms of photoreceptor regeneration and retinal function. SIGNIFICANCE: The findings of present study demonstrated the different effects of MSC-based therapies on various retinal cells which could be helpful in designing more precise treatments that suit to each neurodegenerative disease mechanism and the cells involved. It also suggests that CM might be a better choice due to its multifactorial characteristic.


Subject(s)
Mesenchymal Stem Cells , Neurodegenerative Diseases , Retinal Degeneration , Aged , Animals , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Humans , Iodates , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/metabolism , Quality of Life , Rats , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...