Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.441
Filter
1.
FASEB J ; 38(10): e23679, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780117

ABSTRACT

Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.


Subject(s)
Pericytes , Pericytes/metabolism , Humans , Animals , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinal Diseases/therapy , Retinal Diseases/metabolism , Retinal Diseases/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/therapy , Diabetic Retinopathy/pathology
2.
Alzheimers Res Ther ; 16(1): 100, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711107

ABSTRACT

BACKGROUND: Retinal microvascular signs are accessible measures of early alterations in microvascular dysregulation and have been associated with dementia; it is unclear if they are associated with AD (Alzheimer's disease) pathogenesis as a potential mechanistic link. This study aimed to test the association of retinal microvascular abnormalities in mid and late life and late life cerebral amyloid. METHODS: Participants from the ARIC-PET (Atherosclerosis Risk in Communities-Positron Emission Tomography) study with a valid retinal measure (N = 285) were included. The associations of mid- and late-life retinal signs with late-life amyloid-ß (Aß) by florbetapir PET were tested. Two different measures of Aß burden were included: (1) elevated amyloid (SUVR > 1.2) and (2) continuous amyloid SUVR. The retinal measures' association with Aß burden was assessed using logistic and robust linear regression models. A newly created retinal score, incorporating multiple markers of retinal abnormalities, was also evaluated in association with greater Aß burden. RESULTS: Retinopathy in midlife (OR (95% CI) = 0.36 (0.08, 1.40)) was not significantly associated with elevated amyloid burden. In late life, retinopathy was associated with increased continuous amyloid standardized value uptake ratio (SUVR) (ß (95%CI) = 0.16 (0.02, 0.32)) but not elevated amyloid burden (OR (95%CI) = 2.37 (0.66, 9.88)) when accounting for demographic, genetic and clinical risk factors. A high retinal score in late life, indicating a higher burden of retinal abnormalities, was also significantly associated with increased continuous amyloid SUVR (ß (95% CI) = 0.16 (0.04, 0.32)) independent of vascular risk factors. CONCLUSIONS: Retinopathy in late life may be an easily obtainable marker to help evaluate the mechanistic vascular pathway between retinal measures and dementia, perhaps acting via AD pathogenesis. Well-powered future studies with a greater number of retinal features and other microvascular signs are needed to test these findings.


Subject(s)
Amyloid beta-Peptides , Aniline Compounds , Brain , Positron-Emission Tomography , Retinal Vessels , Humans , Female , Male , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Aged , Middle Aged , Brain/diagnostic imaging , Brain/metabolism , Retinal Vessels/diagnostic imaging , Retinal Diseases/diagnostic imaging , Retinal Diseases/metabolism , Microvessels/diagnostic imaging , Microvessels/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Ethylene Glycols
3.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786093

ABSTRACT

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Subject(s)
Retinoids , Humans , Retinoids/metabolism , Animals , Retina/metabolism , Retinaldehyde/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Vitamin A/metabolism
4.
Cell Commun Signal ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802833

ABSTRACT

The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.


Subject(s)
Membrane Proteins , Retinal Diseases , Humans , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Diseases/metabolism , Retina/metabolism , Retina/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Disease Models, Animal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mutation
5.
J Biomed Sci ; 31(1): 48, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730462

ABSTRACT

Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.


Subject(s)
Blood-Retinal Barrier , Extracellular Vesicles , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/physiopathology , Extracellular Vesicles/metabolism , Humans , Diabetic Retinopathy/physiopathology , Diabetic Retinopathy/metabolism , Retinal Diseases/physiopathology , Retinal Diseases/metabolism , Macular Degeneration/physiopathology , Macular Degeneration/metabolism , Animals
6.
Genome Biol ; 25(1): 123, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760655

ABSTRACT

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Subject(s)
Chromatin , Retina , Retinal Diseases , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Chromatin/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retina/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Promoter Regions, Genetic , Genetic Loci , Zebrafish/genetics , Regulatory Sequences, Nucleic Acid , Genome, Human
7.
Proc Natl Acad Sci U S A ; 121(18): e2311028121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657052

ABSTRACT

Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.


Subject(s)
Aging , Catechin , Cellular Senescence , Proanthocyanidins , Retina , Animals , Retina/metabolism , Retina/drug effects , Mice , Proanthocyanidins/pharmacology , Proanthocyanidins/metabolism , Aging/drug effects , Aging/metabolism , Cellular Senescence/drug effects , Catechin/pharmacology , Catechin/metabolism , Catechin/chemistry , Biflavonoids/pharmacology , Senotherapeutics/pharmacology , Mice, Inbred C57BL , Humans , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Retinal Diseases/pathology
8.
Mol Vis ; 30: 167-174, 2024.
Article in English | MEDLINE | ID: mdl-38601015

ABSTRACT

Purpose: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells. Methods: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo. Results: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs. Conclusions: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Ephrin-B1 , Retinal Diseases , Animals , Humans , Mice , Rats , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Ependymoglial Cells/metabolism , Ephrin-B1/genetics , Ephrin-B1/metabolism , Glucose/metabolism , Inflammation Mediators/metabolism , Retina/metabolism , Retinal Diseases/metabolism
9.
Eur J Pharmacol ; 970: 176510, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493917

ABSTRACT

Activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway protects against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal injury. AMPK activation enhances fatty acid metabolism and ketone body synthesis. Ketone bodies are transported into neurons by monocarboxylate transporters (MCTs) and exert neuroprotective effects. In this study, we examined the distribution and expression levels of MCT1 and MCT2 in the retina and analyzed the effects of pharmacological inhibition of MCTs on the protective effects of metformin and 5-aminoimidazole-4-carboxamide (AICAR), activators of AMPK, against NMDA-induced retinal injury in rats. MCT1 was expressed in the blood vessels, processes of astrocytes and Müller cells, and inner segments of photoreceptors in the rat retina, whereas MCT2 was expressed in neuronal cells in the ganglion cell layer (GCL) and in astrocyte processes. The expression levels of MCT2, but not MCT1, decreased one day after intravitreal injection of NMDA (200 nmol). Intravitreal injection of NMDA decreased the number of cells in the GCL compared to the vehicle seven days after injection. Simultaneous injection of metformin (20 nmol) or AICAR (50 nmol) with NMDA attenuated NMDA-induced cell loss in the GCL, and these protective effects were attenuated by AR-C155858 (1 pmol), an inhibitor of MCTs. AR-C155858 alone had no significant effect on the retinal structure. These results suggest that AMPK-activating compounds protect against NMDA-induced excitotoxic retinal injury via mechanisms involving MCTs in rats. NMDA-induced neurotoxicity may be associated with retinal neurodegenerative changes in glaucoma and diabetic retinopathy. Therefore, AMPK-activating compounds may be effective in managing these retinal diseases.


Subject(s)
Metformin , Retinal Diseases , Thiophenes , Uracil/analogs & derivatives , Rats , Animals , AMP-Activated Protein Kinases/metabolism , N-Methylaspartate/toxicity , Rats, Sprague-Dawley , Retina/metabolism , Retinal Diseases/chemically induced , Retinal Diseases/prevention & control , Retinal Diseases/metabolism , Membrane Transport Proteins/metabolism , Metformin/adverse effects
10.
Exp Eye Res ; 242: 109861, 2024 May.
Article in English | MEDLINE | ID: mdl-38522635

ABSTRACT

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Subject(s)
Amyloid beta-Peptides , Electroretinography , Eye Proteins , Nerve Growth Factors , Serpins , Animals , Serpins/metabolism , Eye Proteins/metabolism , Nerve Growth Factors/metabolism , Rats , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Peptide Fragments/toxicity , Disease Models, Animal , Receptors, Laminin/metabolism , Male , Retina/drug effects , Retina/metabolism , Humans , Intravitreal Injections , Blotting, Western , Retinal Diseases/prevention & control , Retinal Diseases/metabolism , Retinal Diseases/chemically induced , Cells, Cultured
11.
Prog Retin Eye Res ; 100: 101249, 2024 May.
Article in English | MEDLINE | ID: mdl-38430990

ABSTRACT

Translocator protein (18 kDa) (Tspo), formerly known as peripheral benzodiazepine receptor is a highly conserved transmembrane protein primarily located in the outer mitochondrial membrane. In the central nervous system (CNS), especially in glia cells, Tspo is upregulated upon inflammation. Consequently, Tspo was used as a tool for diagnostic in vivo imaging of neuroinflammation in the brain and as a potential therapeutic target. Several synthetic Tspo ligands have been explored as immunomodulatory and neuroprotective therapy approaches. Although the function of Tspo and how its ligands exert these beneficial effects is not fully clear, it became a research topic of interest, especially in ocular diseases in the past few years. This review summarizes state-of-the-art knowledge of Tspo expression and its proposed functions in different cells of the retina including microglia, retinal pigment epithelium and Müller cells. Tspo is involved in cytokine signaling, oxidative stress and reactive oxygen species production, calcium signaling, neurosteroid synthesis, energy metabolism, and cholesterol efflux. We also highlight recent developments in preclinical models targeting Tspo and summarize the relevance of Tspo biology for ocular and retinal diseases. We conclude that glial upregulation of Tspo in different ocular pathologies and the use of Tspo ligands as promising therapeutic approaches in preclinical studies underline the importance of Tspo as a potential disease-modifying protein.


Subject(s)
Receptors, GABA , Retina , Humans , Receptors, GABA/metabolism , Animals , Retina/metabolism , Eye Diseases/metabolism , Retinal Diseases/metabolism , Microglia/metabolism
12.
Mol Genet Genomics ; 299(1): 32, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38472449

ABSTRACT

Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/ß-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.


Subject(s)
Retinal Diseases , Female , Humans , Infant , DNA Mutational Analysis , Eye Proteins/genetics , Familial Exudative Vitreoretinopathies/genetics , Heterozygote , Mutation , Nerve Tissue Proteins/genetics , Pedigree , Phenotype , Retina/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology
13.
FASEB J ; 38(4): e23493, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38363575

ABSTRACT

Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate ß-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted ß-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of ß-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on ß-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.


Subject(s)
Eye Diseases, Hereditary , Retinal Diseases , Humans , Familial Exudative Vitreoretinopathies/genetics , beta Catenin/genetics , beta Catenin/metabolism , Dimerization , Eye Diseases, Hereditary/genetics , Signal Transduction , Retinal Diseases/metabolism , Mutation , Tetraspanins/genetics , Eye Proteins/genetics , Eye Proteins/metabolism , Frizzled Receptors/genetics , DNA Mutational Analysis
14.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396799

ABSTRACT

The human retina is a complex anatomical structure that has no regenerative capacity. The pathogenesis of most retinopathies can be attributed to inflammation, with the activation of the inflammasome protein platform, and to the impact of oxidative stress on the regulation of apoptosis and autophagy/mitophagy in retinal cells. In recent years, new therapeutic approaches to treat retinopathies have been investigated. Experimental data suggest that the secretome of mesenchymal cells could reduce oxidative stress, autophagy, and the apoptosis of retinal cells, and in turn, the secretome of the latter could induce changes in mesenchymal cells. Other studies have evidenced that noncoding (nc)RNAs might be new targets for retinopathy treatment and novel disease biomarkers since a correlation has been found between ncRNA levels and retinopathies. A new field to explore is the interaction observed between the ocular and intestinal microbiota; indeed, recent findings have shown that the alteration of gut microbiota seems to be linked to ocular diseases, suggesting a gut-eye axis. To explore new therapeutical strategies for retinopathies, it is important to use proper models that can mimic the complexity of the retina. In this context, retinal organoids represent a good model for the study of the pathophysiology of the retina.


Subject(s)
Gastrointestinal Microbiome , Retinal Diseases , Humans , Retina/metabolism , Retinal Diseases/metabolism , Inflammation/metabolism
15.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338904

ABSTRACT

Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.


Subject(s)
Macular Degeneration , Retinal Diseases , Humans , Aged , Macular Degeneration/therapy , Macular Degeneration/genetics , Mitochondria/pathology , Retina/pathology , Retinal Diseases/metabolism , Retinal Pigment Epithelium/metabolism
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369214

ABSTRACT

BACKGROUND: Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS: A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS: TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for ß-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS: TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/ß-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING: National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).


Subject(s)
Diabetic Retinopathy , Retinal Diseases , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Diabetic Retinopathy/metabolism , Gliosis/metabolism , Mice, Inbred C57BL , Neuroglia/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
17.
Transl Vis Sci Technol ; 13(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38165719

ABSTRACT

Purpose: The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods: We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results: The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions: This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance: These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.


Subject(s)
Choroidal Neovascularization , Retinal Diseases , Vascular Endothelial Growth Factor Receptor-2 , Animals , Humans , Mice , Cell Proliferation , Cells, Cultured , Choroidal Neovascularization/drug therapy , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Oxygen/metabolism , Phosphorylation , Retinal Diseases/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Nutr Res ; 122: 55-67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185061

ABSTRACT

Hyperglycemia-related retinopathy is a disease with a high blindness rate. Recent reports indicate that many flavonol compounds have the potential to prevent the occurrence of disease in the retina by regulating the gut-retina axis. Here, we hypothesized that quercetin could alleviate the symptoms of retinopathy. To clarify the mechanism, Sprague Dawley rats were fed a high-fat diet containing quercetin for 12 weeks and injected with streptozotocin in the ninth week. Additionally, neomycin and ampicillin were used to establish a pseudo-sterile rat model. Afterward, changes in the retina were investigated by using electroretinogram and optical coherence tomography. Blood and tissue samples were collected and biochemical components were analyzed. The extent of intestinal injury was determined via hematoxylin-eosin staining. Microbial community structure was analyzed by using 16S ribosomal RNA sequencing. Finally, the expression of genes was analyzed using real-time polymerase chain reaction. The results showed that quercetin reduced the decline in electroretinography amplitude and outer nuclear layer thickness, increased the activities of antioxidant enzymes, decreased the contents of proinflammatory factors and blood glucose, enhanced the concentration of insulin, and inhibited intestinal dysbiosis and improved gut morphology. Importantly, the underexpression of nuclear factor erythroid-2 related factor 2 in the retina was reversed by quercetin. However, trend changes were no longer significant in most of the indicators after antibiotic treatment. In summary, quercetin has therapeutic effects on retinopathy by regulating the gut-retina axis and nuclear factor erythroid-2 related factor 2 pathway, and the presence of gut microbiota helps quercetin exert its effects on the retina.


Subject(s)
Hyperglycemia , Retinal Diseases , Rats , Animals , Rats, Sprague-Dawley , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Hyperglycemia/metabolism
19.
Br J Ophthalmol ; 108(3): 329-335, 2024 02 21.
Article in English | MEDLINE | ID: mdl-37751989

ABSTRACT

MicroRNAs belong to the family of non-coding RNAs that participate in cell proliferation, cell death and development. The Müller glial cells are the inherent and specific neuroglia cells in the retinal organisation and play significant roles in retinal neuroprotection, organisational maintenance, inflammation and immunity, regeneration, and the occurrence and development of retinal diseases. However, only a few studies report the underlying mechanism of how miRNAs drive the function of Müller glial cells in the development of retinal diseases. This review aims to summarise the roles of miRNAs in retinal Müller glial cell function, including gliogenesis, inflammation and immunity, regeneration, the development of retinal diseases, and retinal development. This review may point out a novel miRNA-based insight into retinal repair and regeneration. MiRNAs in Müller glial cells may be considered a diagnostic and therapeutic target in the process of retinal repair and regeneration.


Subject(s)
MicroRNAs , Retinal Diseases , Humans , Ependymoglial Cells , MicroRNAs/genetics , Retina , Retinal Diseases/metabolism , Inflammation , Cell Proliferation
20.
Surv Ophthalmol ; 69(2): 179-189, 2024.
Article in English | MEDLINE | ID: mdl-37778668

ABSTRACT

Diseases leading to retinal cell loss can cause severe visual impairment and blindness. The lack of effective therapies to address retinal cell loss and the absence of intrinsic regeneration in the human retina leads to an irreversible pathological condition. Progress in recent years in the generation of human three-dimensional retinal organoids from pluripotent stem cells makes it possible to recreate the cytoarchitecture and associated cell-cell interactions of the human retina in remarkable detail. These human three-dimensional retinal organoid systems made of distinct retinal cell types and possessing contextual physiological responses allow the study of human retina development and retinal disease pathology in a way animal model and two-dimensional cell cultures were unable to achieve. We describe the derivation of retinal organoids from human pluripotent stem cells and their application for modeling retinal disease pathologies, while outlining the opportunities and challenges for its application in academia and industry.


Subject(s)
Pluripotent Stem Cells , Retinal Diseases , Animals , Humans , Retina , Pluripotent Stem Cells/metabolism , Organoids/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Drug Discovery , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...