Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Ophthalmol ; 45(9): 901-910, 2017 12.
Article in English | MEDLINE | ID: mdl-28488341

ABSTRACT

IMPORTANCE: This study identifies unique genetic variation observed in a cohort of Maori and Polynesian patients with rod-cone retinal dystrophies using a targeted next-generation sequencing retinal disease gene panel. BACKGROUND: With over 250 retinal disease genes identified, genetic diagnosis is still only possible in 60-70% of individuals and even less within unique ethnic groups. DESIGN: Prospective genetic testing in patients with rod-cone retinal dystrophies identified from the New Zealand Inherited Retinal Disease Database, PARTICIPANTS: Sixteen patients of Maori and Polynesian ancestry. METHODS: Next-generation sequencing of a targeted retinal gene panel. Sanger sequencing for a novel PDE6B mutation in subsequent Maori patients. MAIN OUTCOME MEASURES: Genetic diagnosis, genotype-phenotype correlation. RESULTS: Thirteen unique pathogenic variants were identified in 9 of 16 (56.25%) patients in 10 different genes. A definitive genetic diagnosis was made in 7/16 patients (43.7%). Six changes were novel and not in public databases of human variation. In four patients, a homozygous, novel pathogenic variant (c.2197G > C, p.(Ala 733Pro)) in PDE6B was identified and also present in a further five similarly affected Maori patients. CONCLUSIONS AND RELEVANCE: Over half of the Maori and Polynesian patients with inherited rod-cone diseases have no pathogenic variant(s) detected with a targeted retinal next-generation sequencing strategy, which is supportive of novel genetic mechanisms in this population. A novel PDE6B founder variant is likely to account for 16% of recessive inherited retinal dystrophy in Maori. Careful characterization of the clinical presentation permits identification of further Maori patients with a similar phenotype and simplifies the diagnostic algorithm.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , DNA/genetics , Mutation , Retinal Dystrophies/genetics , Retinitis Pigmentosa/genetics , Adult , Aged , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , DNA Mutational Analysis , Female , Follow-Up Studies , Genetic Testing , Genetic Variation , Humans , Male , Middle Aged , New Zealand/epidemiology , Pedigree , Phenotype , Polynesia/ethnology , Prospective Studies , Retinal Dystrophies/ethnology , Retinal Dystrophies/metabolism , Retinitis Pigmentosa/ethnology , Retinitis Pigmentosa/metabolism , Young Adult
2.
Invest Ophthalmol Vis Sci ; 55(11): 7562-71, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342620

ABSTRACT

PURPOSE: The aim of this study was to deepen our knowledge on the basis of intrafamilial genetic heterogeneity of inherited retinal dystrophies (RD) to further discern the contribution of individual alleles to the pathology. METHODS: Families with intrafamilial locus and/or allelic heterogeneity were selected from a cohort of 873 characterized of 2468 unrelated RD families. Clinical examination included visual field assessments, electrophysiology, fundus examination, and audiogram. Molecular characterization was performed using a combination of different methods: genotyping microarray, single strand conformational polymorphism (SSCP), denaturing high pressure liquid chromatography (dHPLC), high resolution melt (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, whole-genome homozygosity mapping, and next-generation sequencing (NGS). RESULTS: Overall, intrafamilial genetic heterogeneity was encountered in a total of 8 pedigrees. There were 5 of 873 families (~0.6%) with causative mutations in more than one gene (locus heterogeneity), involving the genes: (1) USH2A, RDH12, and TULP1; (2) PDE6B and a new candidate gene; (3) CERKL and CRB1; (4) BBS1 and C2orf71; and (5) ABCA4 and CRB1. Typically, in these cases, each mutated gene was associated with different phenotypes. In the 3 other families (~0.35%), different mutations in the same gene (allelic heterogeneity) were found, including the frequent RD genes ABCA4 and CRB1. CONCLUSIONS: This systematic research estimates that the frequency of overall mutation load promoting RD intrafamilial heterogeneity in our cohort of Spanish families is almost 1%. The identification of the genetic mechanisms underlying RD locus and allelic heterogeneity is essential to discriminate the real contribution of the monoallelic mutations to the disease, especially in the NGS era. Moreover, it is decisive to provide an accurate genetic counseling and in disease treatment.


Subject(s)
Eye Proteins/genetics , Genetic Heterogeneity , Mutation , Retinal Dystrophies/genetics , Aged , Alleles , DNA Mutational Analysis , Electroretinography , Eye Proteins/metabolism , Female , Genotype , Humans , Male , Multiplex Polymerase Chain Reaction , Pedigree , Phenotype , Prevalence , Retinal Dystrophies/ethnology , Retinal Dystrophies/metabolism , Spain/epidemiology
3.
Exp Eye Res ; 109: 77-82, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23419329

ABSTRACT

The aim of this study was to assess the mutational spectrum of the ABCA4 gene in a cohort of patients with Stargardt disease from Mexico, a previously uncharacterized population. Clinical diagnosis in each patient was supported by a complete ophthalmological assessment that included visual acuity measurement, a slit lamp examination, a fundus examination and photography, electroretinography, fluorescein angiography, and computerized visual fields testing. Molecular analysis was performed by PCR amplification and direct nucleotide sequence of the 50 exons of the ABCA4 gene in genomic DNA. A total of 31 unrelated subjects with the disease were enrolled in the study. Molecular analysis in the total group of 62 alleles allowed the identification of 46 mutant ABCA4 alleles carrying 29 different pathogenic disease-associated mutations. Two ABCA4 mutant alleles were detected in 20 of the 31 patients (64.5%), a single disease allele was identified in six (19.4%), and no mutant alleles were detected in five of the cases (16.1%). Most patients with two ABCA4 mutations (11/20, 55%) were compound heterozygotes. Twelve variants were novel ABCA4 mutations. Nucleotide substitutions were the most frequent type of variation, occurring in 26 out of 29 (89.7%) different mutations. The two most common mutations in our study were the missense changes p.A1773V and p.G818E, which were identified in eight (17%) and seven (15%) of the total 46 disease-associated alleles, respectively. Haplotype analyses of intragenic SNPs in four subjects carrying the p.A1773V mutation supported a common origin for this mutation. In conclusion, this is the first report of ABCA4 molecular screening in Latin American Stargardt disease patients. Our results expand the mutational spectrum of the disease by adding 12 novel ABCA4 pathogenic variants and support the occurrence of a founder effect for the p.A1773V mutation in the Mexican population. The identification of recurrent mutations in our cohort will direct future ABCA4 molecular screening in patients from this ethnic group.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Macular Degeneration/ethnology , Macular Degeneration/genetics , Retinal Dystrophies/ethnology , Retinal Dystrophies/genetics , Adolescent , Adult , Child , DNA Mutational Analysis , Female , Founder Effect , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Heterozygote , Homozygote , Humans , Male , Mexico/epidemiology , Point Mutation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...