ABSTRACT
Immunocytochemical techniques were employed to locate somatostatin (SS)-containing cells in the retina of the 13-lined ground squirrel (Spermophilus tridecemlineatus). In normal retinas immunostain was limited to neuronal processes, yet distinctly labeled somata were detected in retinas of animals pretreated with colchicine. Labeled cell bodies were located in the outermost and innermost portions of the inner nuclear layer (INL) and in the ganglion cell layer (GCL). The largest population of SS-like immunoreactive neurons was found in the innermost INL. These cells were identified as small and medium sized amacrine cells whose soma diameters ranged from 4 to 14 microns. A smaller population of immunoreactive cells was observed in the outermost region of the INL. These cells, presumptive horizontal cells, were found mainly in peripheral regions of the retina. Immunoreactive cells in the GCL were of two types: displaced amacrines, and retinal ganglion cells. SS-positive axons in the optic fiber layer suggest that some of the immunoreactive GCL neurons were ganglion cells, and it is our opinion that these cells belong to a class of associational ganglion cells previously identified in other species.
Subject(s)
Retina/chemistry , Retinal Ganglion Cells/chemistry , Somatostatin/analysis , Animals , Neurons/chemistry , Retina/cytology , SciuridaeABSTRACT
Tyrosine hydroxylase (TH), the rate limiting enzyme in the conversion of tyrosine to DOPA, is a reliable marker for catecholaminergic (dopaminergic) neurons. To investigate the distribution of dopamine in the retina of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus), retinal sections and wholemounts were incubated with an antiserum directed against TH and then processed using the avidin-biotin immunohistochemical method. TH-like immunoreactivity was exhibited by amacrine and interplexiform-like cells in the innermost portion of the inner nuclear layer (INL) and by cells we presume to be displaced amacrines in the ganglion cell layer (GCL). Their somata were 12 to 20 microns in diameter, with the majority measuring approximately 18 microns. In transverse sections the processes of the three types of neurons were seen to extend into lamina 1 of the inner plexiform layer (IPL). In horizontal sections 2-3 primary dendrites were seen to ramify and the branches extended for considerable distances, with overlap between the dendritic fields of neighboring TH cells. A distance to the nearest neighbor analysis suggests the TH-neurons in the INL are distributed in a non-random fashion.
Subject(s)
Retina/cytology , Retinal Ganglion Cells/cytology , Sciuridae/anatomy & histology , Tyrosine 3-Monooxygenase/analysis , Animals , Retina/chemistry , Retina/metabolism , Retinal Ganglion Cells/chemistry , Retinal Ganglion Cells/metabolism , Sciuridae/metabolism , Tyrosine 3-Monooxygenase/metabolismABSTRACT
Tyrosine hydroxylase (TH), the rate limiting enzyme in the conversion of tyrosine to DOPA, is a reliable marker for catecholaminergic (dopaminergic) neurons. To investigate the distribution of dopamine in the retina of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus), retinal sections and wholemounts were incubated with an antiserum directed against TH and then processed using the avidin-biotin immunohistochemical method. TH-like immunoreactivity was exhibited by amacrine and interplexiform-like cells in the innermost portion of the inner nuclear layer (INL) and by cells we presume to be displaced amacrines in the ganglion cell layer (GCL). Their somata were 12 to 20 microns in diameter, with the majority measuring approximately 18 microns. In transverse sections the processes of the three types of neurons were seen to extend into lamina 1 of the inner plexiform layer (IPL). In horizontal sections 2-3 primary dendrites were seen to ramify and the branches extended for considerable distances, with overlap between the dendritic fields of neighboring TH cells. A distance to the nearest neighbor analysis suggests the TH-neurons in the INL are distributed in a non-random fashion
Subject(s)
Animals , Retinal Ganglion Cells/cytology , Retina/cytology , Sciuridae/anatomy & histology , Tyrosine 3-Monooxygenase/analysis , Retinal Ganglion Cells/chemistry , Retinal Ganglion Cells/metabolism , Retina/chemistry , Retina/metabolism , Sciuridae/metabolism , Tyrosine 3-Monooxygenase/metabolismABSTRACT
A small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12-26 microns in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.