Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.341
Filter
1.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824126

ABSTRACT

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Subject(s)
Lipid Droplets , Lipid Metabolism , Macular Degeneration , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animals , Humans , Mice , Lipid Droplets/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Male , Oxidative Stress
2.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837708

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Subject(s)
ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
3.
Acta Neuropathol Commun ; 12(1): 85, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822433

ABSTRACT

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Subject(s)
Dimethyl Sulfoxide , Mice, Inbred C57BL , Animals , Mice , Dimethyl Sulfoxide/pharmacology , Biomarkers/metabolism , Mice, Transgenic , Tomography, Optical Coherence , Retinal Rod Photoreceptor Cells/drug effects , Contrast Sensitivity/drug effects , Contrast Sensitivity/physiology , Disease Models, Animal , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Vision, Ocular/drug effects , Vision, Ocular/physiology
4.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838135

ABSTRACT

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Mice, Knockout , Oxidative Stress , Retinal Degeneration , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Animals , Humans , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Mice , Cellular Senescence , Mice, Inbred C57BL , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mitochondria/metabolism , Male
5.
BMC Ophthalmol ; 24(1): 237, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844903

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS: ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS: After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION: PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.


Subject(s)
Apoptosis , Cell Survival , Oxidative Stress , Peroxiredoxins , Reactive Oxygen Species , Retinal Pigment Epithelium , Ultraviolet Rays , Humans , Retinal Pigment Epithelium/radiation effects , Retinal Pigment Epithelium/metabolism , Peroxiredoxins/metabolism , Ultraviolet Rays/adverse effects , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System/physiology , Cell Line , Blotting, Western , Cells, Cultured , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Signal Transduction
6.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38739438

ABSTRACT

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Subject(s)
Citric Acid Cycle , Glycolysis , Oxidative Phosphorylation , Retina , Animals , Mice , Retina/metabolism , Energy Metabolism , Metabolomics , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/metabolism
7.
Elife ; 122024 May 09.
Article in English | MEDLINE | ID: mdl-38722314

ABSTRACT

Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.


The backs of our eyes are lined with retinal pigment epithelial cells (or RPE cells for short). These cells provide nutrition to surrounding cells and contain a pigment called melanin that absorbs excess light that might interfere with vision. By doing so, they support the cells that receive light to enable vision. However, with age, RPE cells can become damaged and less able to support other cells. This can lead to a disease called age-related macular degeneration, which can cause blindness. One potential way to treat this disease is to transplant healthy RPE cells into eyes that have lost them. These healthy cells can be grown in the laboratory from human pluripotent stem cells, which have the capacity to turn into various specialist cells. Stem cell-derived RPE cells growing in a dish contain varying amounts of melanin, resulting in some being darker than others. This raised the question of whether pigment levels affect the function of RPE cells. However, it was difficult to compare single cells containing various amounts of pigment as most previous studies only analyzed large numbers of RPE cells mixed together. Nakai-Futatsugi et al. overcame this hurdle using a technique called Automated Live imaging and cell Picking System (also known as ALPS). More than 2300 stem cell-derived RPE cells were photographed individually and the color of each cell was recorded. The gene expression of each cell was then measured to investigate whether certain genes being switched on or off affects pigment levels and cell function. Analysis did not find a consistent pattern of gene expression underlying the pigmentation of RPE cells. Even gene expression related to the production of melanin was only slightly linked to the color of the cells. These findings suggests that the RPE cell color fluctuates and is not primarily determined by which genes are switched on or off. Future experiments are required to determine whether the findings are the same for RPE cells grown naturally in the eyes and whether different pigment levels affect their capacity to protect the rest of the eye.


Subject(s)
Induced Pluripotent Stem Cells , Pigmentation , Retinal Pigment Epithelium , Transcriptome , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/physiology , Induced Pluripotent Stem Cells/metabolism , Pigmentation/genetics , Gene Expression Profiling , Cells, Cultured , Cell Differentiation/genetics
8.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710714

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Subject(s)
Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
9.
Nat Commun ; 15(1): 3773, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710738

ABSTRACT

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.


Subject(s)
CRISPR-Cas Systems , Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Gene Editing , Genetic Therapy , Induced Pluripotent Stem Cells , Retinal Diseases , Humans , Gene Editing/methods , Animals , HEK293 Cells , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/metabolism , Mice , Induced Pluripotent Stem Cells/metabolism , Genetic Therapy/methods , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Disease Models, Animal , Mutation , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Genetic Vectors/genetics , Introns/genetics , Exons/genetics
10.
Genome Biol ; 25(1): 123, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760655

ABSTRACT

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Subject(s)
Chromatin , Retina , Retinal Diseases , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Chromatin/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retina/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Promoter Regions, Genetic , Genetic Loci , Zebrafish/genetics , Regulatory Sequences, Nucleic Acid , Genome, Human
11.
Invest Ophthalmol Vis Sci ; 65(5): 27, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38758638

ABSTRACT

Purpose: To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods: NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results: The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions: NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.


Subject(s)
Ophthalmoscopy , Optical Imaging , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/metabolism , Ophthalmoscopy/methods , Adult , Middle Aged , Animals , Female , Mice , Male , Young Adult , Optical Imaging/methods , Reproducibility of Results , Infrared Rays , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Fluorescein Angiography/methods
12.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727927

ABSTRACT

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Subject(s)
Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731826

ABSTRACT

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Subject(s)
Cytokines , Herpesvirus 1, Human , Immediate-Early Proteins , Inflammasomes , Retinal Pigment Epithelium , Humans , Inflammasomes/metabolism , Herpesvirus 1, Human/physiology , Cytokines/metabolism , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Cell Line , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , DNA-Binding Proteins
14.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786083

ABSTRACT

As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.


Subject(s)
Epithelial Cells , Extracellular Vesicles , Mesenchymal Stem Cells , Retinal Pigment Epithelium , Telomerase , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Extracellular Vesicles/metabolism , Telomerase/metabolism , Epithelial Cells/metabolism , Epithelial Cells/cytology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology
15.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38691000

ABSTRACT

Mechanical stimulation as a mimic of drusen formation in the eye increases the expression of angiogenic factors in retinal pigment epithelial (RPE) cells, but the underlying molecular mechanisms remain unclear. We investigated and characterized the effects of mechanical stimulation on the expression of angiogenic factors in RPE cells both in vitro and in a mouse model. Mechanical stimulation increased the expression of vascular endothelial growth factor (VEGF, encoded by VEGFA) and other angiogenesis-related genes in cultured RPE1 cells. The presence of hypoxia-inducible factor 1α (HIF-1α, encoded by HIF1A) was also increased, and both knockdown of HIF-1α and treatment with the HIF-1α inhibitor CAY10585 attenuated the effect of mechanical stimulation on angiogenesis factor gene expression. Signaling by the tyrosine kinase SRC and p38 mitogen-activated protein kinase was involved in HIF-1α activation and consequent angiogenesis-related gene expression induced by mechanical stimulation. Our results suggest that SRC-p38 and HIF-1α signaling are involved in the upregulation of angiogenic factors in RPE cells by mechanical stimulation. Such in vivo suppression of upregulated expression of angiogenesis-related genes by pharmacological inhibitors of HIF-1α suggests a new potential approach to the treatment of age-related macular degeneration.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Retinal Pigment Epithelium , Up-Regulation , p38 Mitogen-Activated Protein Kinases , src-Family Kinases , Retinal Pigment Epithelium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stress, Mechanical , Signal Transduction , Mice , Cell Line , Angiogenesis Inducing Agents/metabolism , Epithelial Cells/metabolism , Humans
16.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727583

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Subject(s)
Carrier Proteins , Disease Models, Animal , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa , Animals , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense , Cell Survival , Alleles , Gene Deletion , Thioredoxins/genetics , Thioredoxins/metabolism , Retinal Pigment Epithelium/metabolism
17.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
18.
FASEB J ; 38(9): e23638, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713098

ABSTRACT

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Subject(s)
Blood-Retinal Barrier , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Interleukin-10 , Macrophages , Animals , Humans , Male , Mice , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Cell Polarity/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Disease Models, Animal , Interleukin-10/metabolism , Macrophage Activation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/drug effects , Streptozocin
19.
Biomed Pharmacother ; 175: 116703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713948

ABSTRACT

The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.


Subject(s)
Brain , Retina , YAP-Signaling Proteins , Humans , Animals , Retina/metabolism , Retina/pathology , Brain/metabolism , Brain/pathology , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/genetics , Epigenesis, Genetic , Retinal Pigment Epithelium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...