Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
FASEB J ; 38(5): e23512, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430220

ABSTRACT

The robust integrity of the retinal pigment epithelium (RPE), which contributes to the outer brain retina barrier (oBRB), is compromised in several retinal degenerative and vascular disorders, including diabetic macular edema (DME). This study evaluates the role of a new generation of histone deacetylase inhibitor (HDACi), ITF2357, in regulating outer blood-retinal barrier function and investigates the underlying mechanism of action in inhibiting TNFα-induced damage to RPE integrity. Using the immortalized RPE cell line (ARPE-19), ITF2357 was found to be non-toxic between 50 nM and 5 µM concentrations. When applied as a pre-treatment in conjunction with an inflammatory cytokine, TNFα, the HDACi was safe and effective in preventing epithelial permeability by fortifying tight junction (ZO-1, -2, -3, occludin, claudin-1, -2, -3, -5, -19) and adherens junction (E-cadherin, Nectin-1) protein expression post-TNFα stress. Mechanistically, ITF2357 depicted a late action at 24 h via attenuating IKK, IκBα, and p65 phosphorylation and ameliorated the expression of IL-1ß, IL-6, and MCP-1. Also, ITF2357 delayed IκBα synthesis and turnover. The use of Bay 11-7082 and MG132 further uncovered a possible role for ITF2357 in non-canonical NF-κB activation. Overall, this study revealed the protection effects of ITF2357 by regulating the turnover of tight and adherens junction proteins and modulating NF-κB signaling pathway in the presence of an inflammatory stressor, making it a potential therapeutic application for retinal vascular diseases such as DME with compromised outer blood-retinal barrier.


Subject(s)
Diabetic Retinopathy , Hydroxamic Acids , Macular Edema , Humans , NF-kappa B/metabolism , Diabetic Retinopathy/metabolism , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macular Edema/metabolism , Signal Transduction , Retinal Pigment Epithelium/metabolism , Blood-Retinal Barrier/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinal Pigments/therapeutic use
2.
Acta Ophthalmol ; 102 Suppl 282: 3-53, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467968

ABSTRACT

Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase ß. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1ß in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.


Subject(s)
Geographic Atrophy , Macular Degeneration , Humans , Animals , Mice , Infant , Inflammasomes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Retinal Pigment Epithelium , Thrombin , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Quality of Life , Macular Degeneration/genetics , Macular Degeneration/metabolism , Oxidative Stress , Biomarkers/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
3.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Article in English | MEDLINE | ID: mdl-38508744

ABSTRACT

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress , Epithelial Cells , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
4.
Cell Tissue Res ; 396(1): 103-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403744

ABSTRACT

The formation of the epiretinal fibrotic membrane by retinal pigment epithelial (RPE) cells is a primary pathological change for proliferative vitreoretinopathy (PVR). Bone morphogenetic protein 6 (BMP6) is an antifibrogenic factor in various cells. To date, it is still unknown whether BMP6 can interfere with the fibrogenesis of RPE cells during the progression of PVR. This work aimed to address the relationship between BMP6 and transforming growth factor-ß2 (TGF-ß2)-elicited fibrogenesis of RPE cells, an experimental model for studying PVR in vitro. The BMP6 level was down-regulated, while the TGF-ß2 level was up-regulated in the vitreous humor of PVR patients. The BMP6 level was down-regulated in human RPE cells challenged with TGF-ß2. The treatment of RPE cells with TGF-ß2 resulted in significant increases in proliferation, migration, epithelial-to-mesenchymal transition (EMT), and extracellular matrix (ECM) remodelling. These effects were found to be inhibited by the overexpression of BMP6 or exacerbated by the knockdown of BMP6. BMP6 overexpression reduced the phosphorylation of p38 and JNK in TGF-ß2-stimulated RPE cells, while BMP6 knockdown showed the opposite effects. The inhibition of p38 or JNK partially reversed the BMP6-silencing-induced promoting effects on TGF-ß2-elicited fibrogenesis in RPE cells. Taken together, BMP6 demonstrates the ability to counteract the proliferation, migration, EMT, and ECM remodelling of RPE cells induced by TGF-ß2. This is achieved through the regulation of the p38 and JNK MAPK pathways. These findings imply a potential connection between BMP6 and PVR, and highlight the potential application of BMP6 in therapeutic interventions for PVR.


Subject(s)
Vitreoretinopathy, Proliferative , Humans , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology , Retinal Pigment Epithelium , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/therapeutic use , Bone Morphogenetic Protein 6/pharmacology , Bone Morphogenetic Protein 6/metabolism , Bone Morphogenetic Protein 6/therapeutic use , Epithelial-Mesenchymal Transition , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinal Pigments/therapeutic use , Cell Movement
5.
Immunopharmacol Immunotoxicol ; 46(1): 33-39, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37681978

ABSTRACT

OBJECTIVE: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.


Subject(s)
Bibenzyls , Diabetic Retinopathy , Guaiacol/analogs & derivatives , NF-kappa B , Humans , NF-kappa B/metabolism , Glucose/toxicity , Glucose/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Inflammation/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Epithelial Cells , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
6.
J Microbiol Biotechnol ; 34(3): 596-605, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38044685

ABSTRACT

Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.


Subject(s)
Anthocyanins , Hydrogen Peroxide , Humans , Anthocyanins/pharmacology , Anthocyanins/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/toxicity , NF-E2-Related Factor 2/metabolism , Heme Oxygenase-1/metabolism , Signal Transduction , Cell Line , Oxidative Stress , Apoptosis , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
7.
Environ Toxicol Pharmacol ; 102: 104211, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423393

ABSTRACT

Environmental exposure to urban particulate matter (UPM) is a serious health concern worldwide. Although several studies have linked UPM to ocular diseases, no study has reported effects of UPM exposure on senescence in retinal cells. Therefore, this study aimed to investigate the effects of UPM on senescence and regulatory signaling in human retinal pigment epithelial ARPE-19 cells. Our study demonstrated that UPM significantly promoted senescence, with increased senescence-associated ß-galactosidase activity. Moreover, both mRNA and protein levels of senescence markers (p16 and p21) and the senescence-associated secretory phenotype, including IL-1ß, matrix metalloproteinase-1, and -3 were upregulated. Notably, UPM increased mitochondrial reactive oxygen species-dependent nuclear factor-kappa B (NF-κB) activation during senescence. In contrast, use of NF-κB inhibitor Bay 11-7082 reduced the level of senescence markers. Taken together, our results provide the first in vitro preliminary evidence that UPM induces senescence by promoting mitochondrial oxidative stress-mediated NF-κB activation in ARPE-19 cells.


Subject(s)
NF-kappa B , Particulate Matter , Humans , Particulate Matter/toxicity , NF-kappa B/metabolism , Cell Line , Reactive Oxygen Species/metabolism , Oxidative Stress , Cellular Senescence , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Epithelial Cells/metabolism
8.
Aging (Albany NY) ; 15(15): 7513-7532, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37517088

ABSTRACT

Long noncoding RNAs (lncRNAs) play important roles in the development of age-related macular degeneration (AMD). However, the effect of long non-coding RNA activated by DNA damage (NORAD) on AMD remains unknown. This study aimed to investigate the effect of NORAD on RPE cell senescence and degeneration. Irradiated adult retinal pigment epithelial cell line-19 (ARPE-19) and sodium iodate-treated mice were used as in vitro and in vivo AMD models. Results showed that irradiation-induced AMD characteristics of ARPE-19 and NORAD-knockdown aggravated cell cycle arrest in the G2/M phase, cell apoptosis and cell senescence along with the increased expression of phosphorylated P53 (p-P53) and P21. AMD factors C3, ICAM-1, APP, APOE, and VEGF-A were also increased by NORAD-knockdown. Moreover, NORAD-knockdown increased irradiation-induced reduction of mitochondrial homeostasis factors, (i.e., TFAM and POLG) and mitochondrial respiratory chain complex genes (i.e., ND1 and ND5) along with mitochondrial reactive oxygen species (ROS). We also identified a strong interaction of NORAD and PGC-1α and sirtuin 1 (SIRT1) in ARPE-19; that is, NORAD knockdown increases the acetylation of PGC-1α. In NORAD knockout mice, NORAD-knockout accelerated the sodium iodate-reduced retinal thickness reduction, function impairment and loss of retinal pigment in the fundus. Therefore, NORAD-knockdown accelerates retinal cell senescence, apoptosis, and AMD markers via PGC-1α acetylation, mitochondrial ROS, and the p-P53-P21signaling pathway, in which NORAD-mediated effect on PGC-1α acetylation might occur through the direct interaction with PGC-1α and SIRT1.


Subject(s)
Macular Degeneration , RNA, Long Noncoding , Mice , Animals , Reactive Oxygen Species/metabolism , Oxidative Stress , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinal Pigment Epithelium
9.
Redox Biol ; 64: 102786, 2023 08.
Article in English | MEDLINE | ID: mdl-37348156

ABSTRACT

Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.


Subject(s)
Lactoylglutathione Lyase , Metformin , Retinal Diseases , Mice , Animals , Metformin/pharmacology , AMP-Activated Protein Kinases/metabolism , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolism , Magnesium Oxide/metabolism , Magnesium Oxide/pharmacology , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Mitochondria/metabolism , Retinal Diseases/metabolism , Glycation End Products, Advanced/metabolism , Epithelial Cells/metabolism , Retinal Pigments/pharmacology
10.
Genes Genomics ; 45(9): 1153-1163, 2023 09.
Article in English | MEDLINE | ID: mdl-37354257

ABSTRACT

BACKGROUND: Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is a major risk factor for diabetic retinopathy (DR). Sarsasapogenin is a natural steroidal saponin that is known to have excellent antidiabetic effects and improve diabetic complications, but its potential efficacy and mechanism for DR are unknown. OBJECTIVES: The current study was designed to explore whether sarsasapogenin inhibits hyperglycemia-induced oxidative stress in human retinal pigment epithelial (RPE) ARPE-19 cells and to elucidate the molecular mechanisms. METHODS: To mimic hyperglycemic conditions, ARPE-19 cells were cultured in medium containing high glucose (HG). The suppressive effects of sarsasapogenin on HG-induced cell viability reduction, apoptosis and ROS production were investigated. In addition, the relevance of the nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway was explored to investigate the mechanism of antioxidant and anti-inflammatory activity of sarsasapogenin. RESULTS: Sarsasapogenin significantly alleviated cytotoxicity and apoptosis in HG-treated ARPE-19 cells through inhibition of intracellular ROS generation. Sarsasapogenin also effectively attenuated HG-induced excess accumulation of mitochondrial superoxide, reduction of glutathione content, and inactivation of manganese superoxide dismutase and glutathione peroxidase. The HG condition markedly increased the expression and maturation of interleukin (IL)-1ß and IL-18 through the activation of the NF-kB signaling pathway, whereas sarsasapogenin reversed these effects. Moreover, although the expression of NLRP3 inflammasome multiprotein complex molecules was increased in ARPE-19 cells cultured under HG conditions, their levels remained similar to the control group in the presence of sarsasapogenin. CONCLUSION: Sarsasapogenin could protect RPE cells from HG-induced injury by inhibiting ROS generation and NF-κB/NLRP3 inflammasome pathway, suggesting its potential as a therapeutic agent to improve the symptoms of DR.


Subject(s)
Hyperglycemia , Inflammasomes , Humans , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Glucose , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
11.
Biochim Biophys Acta Gen Subj ; 1867(8): 130374, 2023 08.
Article in English | MEDLINE | ID: mdl-37187450

ABSTRACT

Mitochondrial dynamics is a morphological balance between fragmented and elongated shapes, reflecting mitochondrial metabolic status, cellular damage, and mitochondrial dysfunction. The anaphylatoxin C5a derived from complement component 5 cleavage, enhances cellular responses involved in pathological stimulation, innate immune responses, and host defense. However, the specific response of C5a and its receptor, C5a receptor (C5aR), in mitochondria is unclear. Here, we tested whether the C5a/C5aR signaling axis affects mitochondrial morphology in human-derived retinal pigment epithelial cell monolayers (ARPE-19). C5aR activation with the C5a polypeptide induced mitochondrial elongation. In contrast, oxidatively stressed cells (H2O2) responded to C5a with an enhancement of mitochondrial fragmentation and an increase in the number of pyknotic nuclei. C5a/C5aR signaling increased the expression of mitochondrial fusion-related protein, mitofusin-1 (MFN1) and - 2 (MFN2), as well as enhanced optic atrophy-1 (Opa1) cleavage, which are required for mitochondrial fusion events, whereas the mitochondrial fission protein, dynamin-related protein-1 (Drp1), and mitogen-activated protein kinase (MAPK)-dependent extracellular signal-regulated protein kinase (Erk1/2) phosphorylation were not affected. Moreover, C5aR activation increased the frequency of endoplasmic reticulum (ER)-mitochondria contacts. Finally, oxidative stress induced in a single cell within an RPE monolayer (488 nm blue laser spot stimulation) induced a bystander effect of mitochondrial fragmentation in adjacent surrounding cells only in C5a-treated monolayers. These results suggest that C5a/C5aR signaling produced an intermediate state, characterized by increased mitochondrial fusion and ER-mitochondrial contacts, that sensitizes cells to oxidative stress, leading to mitochondrial fragmentation and cell death.


Subject(s)
Mitochondrial Dynamics , Receptor, Anaphylatoxin C5a , Humans , Epithelial Cells , Hydrogen Peroxide/pharmacology , Oxidative Stress , Retinal Pigments/pharmacology
12.
Mol Cells ; 46(7): 420-429, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37222160

ABSTRACT

Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.


Subject(s)
Antineoplastic Agents , Macular Degeneration , Retinal Degeneration , Animals , Mice , Senotherapeutics , Antineoplastic Agents/pharmacology , Macular Degeneration/metabolism , Apoptosis , Epithelial Cells/metabolism , Retinal Pigments/pharmacology , Cellular Senescence
13.
Diabet Med ; 40(5): e15050, 2023 05.
Article in English | MEDLINE | ID: mdl-36661363

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes with nocuous effects on patients' eye health, typically accompanies by excessive inflammation and oxidative stress. Insulin-like growth factor-2 messenger RNA-binding protein 3 (IGF2BP3) was engaged with inflammation, whereas its precise role in the DR process was unclear. And enhanced lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and decreased ascorbic acid (AA) were also found in DR. This study was to explore the regulatory role and mechanism of IGF2BP3, MALAT1 and AA in the high glucose (HG)-induced retinal pigment epithelial (RPE) cell injury. METHODS: ARPE-19 cells were treated with HG to establish the in vitro RPE cell injury model. The mRNA and protein levels of the gene were evaluated by qRT-PCR or Western blot. Immunofluorescence detected the translocation condition of the p65 protein. Inflammatory factor levels were detected by ELISA assays. Apoptosis was detected by flow cytometry. The binding interaction of IGF2BP3 and MALAT1 was validated by RIP-qPCR assays. RESULTS: In HG-induced RPE cell injury, IGF2BP3 expression, inflammatory response and apoptosis were enhanced. Next, the IGF2BP3 activated the NF-κB signalling to promote the RPE cell injury development. MALAT1 could directly bind with IGF2BP3 and up-regulate its expression. In addition, AA ameliorated the HG-induced RPE cell injury through the regulation of MALAT1. CONCLUSION: Ascorbic acid ameliorated HG-induced RPE cell injury by repressing the NF-κB signalling pathway via modulating the MALAT1/IGF2BP3 axis.


Subject(s)
Diabetic Retinopathy , RNA, Long Noncoding , Humans , NF-kappa B/metabolism , NF-kappa B/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology , Ascorbic Acid/pharmacology , Cell Line , Signal Transduction , Diabetic Retinopathy/pathology , Inflammation/genetics , Glucose/pharmacology , Epithelial Cells/metabolism , Retinal Pigments/pharmacology
14.
Arch Physiol Biochem ; 129(1): 54-60, 2023 Feb.
Article in English | MEDLINE | ID: mdl-32730124

ABSTRACT

Oxidative stress and inflammation are necessary pathogenic factors contributing to the aetiology of diabetic retinopathy (DR). Triptolide (TPL) is derived from the traditional Chinese herb lei gong teng with anti-inflammatory, immunosuppressive and antitumor activities. This article was developed to examine the effect of TPL on DR. ARPE-19 cells were pre-treated with TPL and then stimulated by high glucose (HG). We found that TPL treatment enhanced cell viability, decreased apoptosis and ROS production in HG-treated RPE cells. MiR-29b was low-expressed in HG-treated cells, but TPL raised its expression. In addition, the protective activity of TPL towards ARPE-19 cells was attenuated when miR-29b was reduced. By utilising bioinformatics evaluation, PTEN was predicted as a downstream target of miR-29b. Also, TPL obstructed PI3K/AKT signalling pathways in HG-treated ARPE-19 Cells. Taken together, TPL secured ARPE-19 cells from HG-induced oxidative damage via regulating miR-29b/PTEN axis.


Subject(s)
Diabetic Retinopathy , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/toxicity , Apoptosis , Retinal Pigments/pharmacology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
15.
Genes Genomics ; 45(3): 271-284, 2023 03.
Article in English | MEDLINE | ID: mdl-36018494

ABSTRACT

BACKGROUND: Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES: This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS: The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS: The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION: The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide , Heme Oxygenase-1/metabolism , Cell Line , Oxidative Stress , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
16.
Photochem Photobiol Sci ; 22(1): 21-32, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36036336

ABSTRACT

Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.


Subject(s)
Galectin 3 , Oxidative Stress , Humans , Galectin 3/metabolism , Galectin 3/pharmacology , Cell Death , Retinal Pigment Epithelium/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Reactive Oxygen Species/metabolism
17.
Discov Med ; 34(171): 19-24, 2022.
Article in English | MEDLINE | ID: mdl-36274257

ABSTRACT

Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. The value of TEER reflects the physical structure and characteristics of epithelial/endothelial cells. TEER value is a preferred physiological indicator reflecting transport rate of ions and macromolecules through the paracellular pathway, which is used to evaluate permeability of paracellular pathway. TEER value has a high specificity for the permeability of reactive tightly connected complex. TEER value is an effective indicator to evaluate the integrity of cell barrier. The cell barrier not only controls the diffusion penetration of various substances in adjacent intercellular spaces, but also regulates the transport of ions and macromolecules across. On one hand, the cell barrier protects the body from harmful substances; on the other hand, it restricts the entry of therapeutic drugs. Therefore, with the increase of permeability in paraepithelial pathway, the TEER value decreased, otherwise, it increased. In this review article, we compared the advantages and disadvantages of the existing methods for measuring TEER and summarized the factors affecting TEER accuracy, as well as the roles of TEER in mechanisms of retinal pigment epithelial barrier and retinal disorders such as proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa.


Subject(s)
Retinal Diseases , Retinal Pigments , Humans , Electric Impedance , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Endothelial Cells , Tight Junctions/metabolism , Permeability , Epithelial Cells/metabolism
18.
Front Cell Infect Microbiol ; 12: 1002817, 2022.
Article in English | MEDLINE | ID: mdl-36171756

ABSTRACT

Ocular toxoplasmosis (OT) is retinochoroiditis caused by Toxoplasma gondii infection, which poses a huge threat to vision. However, most traditional oral drugs for this disease have multiple side effects and have difficulty crossing the blood-retinal barrier, so the new alternative strategy is required to be developed urgently. Histone deacetylases (HDAC) inhibitors, initially applied to cancer, have attracted considerable attention as potential anti-Toxoplasma gondii drugs. Here, the efficacy of a novel HDAC inhibitor, Panobinostat (LBH589), against T. gondii has been investigated. In vitro, LBH589 inhibited the proliferation and activity of T. gondii in a dose-dependent manner with low toxicity to retinal pigment epithelial (RPE) cells. In vivo, optical coherence tomography (OCT) examination and histopathological studies showed that the inflammatory cell infiltration and the damage to retinal architecture were drastically reduced in C57BL/6 mice upon treatment with intravitreal injection of LBH589. Furthermore, we have found the mRNA expression levels of inflammatory cytokines were significantly decreased in LBH589-treated group. Collectively, our study demonstrates that LBH589 holds great promise as a preclinical candidate for control and cure of ocular toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis, Ocular , Animals , Cytokines/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases , Mice , Mice, Inbred C57BL , Panobinostat/pharmacology , RNA, Messenger , Retinal Pigments/pharmacology , Toxoplasmosis, Ocular/diagnosis , Toxoplasmosis, Ocular/drug therapy
19.
Medicina (Kaunas) ; 58(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013596

ABSTRACT

Background and Objectives: Age-related macular degeneration is a slow-progressing disease in which lipofuscin accumulates in the retina, causing inflammation and apoptosis of retinal pigment epithelial (RPE) cells. This study aimed to identify N-methyl-D-aspartate (NMDA) signaling as a novel mechanism for scavenging N-retinylidene-N-retinylethanolamine (A2E), a component of ocular lipofuscin, in human RPE cells. Materials and Methods: A2E degradation assays were performed in ARPE-19 cells using fluorescently labeled A2E. The autophagic activity in ARPE-19 cells was measured upon blue light (BL) exposure, after A2E treatment. Autophagy flux was determined by measuring LC3-II formation using immunoblotting and confocal microscopy. To determine whether autophagy via the NMDA receptor is involved in A2E clearance, ATG5-deficient cells were used. Results: Ro 25-6981, an NR2B-selective NMDA receptor antagonist, effectively cleared A2E. Ro 25-6981 reduced A2E accumulation in the lysosomes of ARPE-19 cells at sub-cytotoxic concentrations, while increasing the formation of LC3-II and decreasing p62 protein levels in a concentration-dependent manner. The autophagic flux monitored by RFP-GFP-LC3 and bafilomycin A1 assays was significantly increased by Ro 25-6981. A2E clearance by Ro 25-6981 was abolished in ATG5-depleted ARPE-19 cells, suggesting that A2E degradation by Ro 25-6981 was mediated by autophagy. Furthermore, treatment with other NMDA receptor antagonists, CP-101,606 and AZD6765, showed similar effects on autophagy activation and A2E degradation in ARPE-19 cells. In contrast, glutamate, an NMDA receptor agonist, exhibited a contrasting effect, suggesting that both the activation of autophagy and the degradation of A2E by Ro 25-6981 in ARPE-19 cells occur through inhibition of the NMDA receptor pathway. Conclusions: This study demonstrates that NMDA receptor antagonists degrade lipofuscin via autophagy in human RPE cells and suggests that NMDA receptor antagonists could be promising new therapeutics for retinal degenerative diseases.


Subject(s)
Lipofuscin , Retinal Pigment Epithelium , Autophagy/physiology , Epithelial Cells , Humans , Lipofuscin/metabolism , Lipofuscin/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Retinoids/metabolism , Retinoids/toxicity
20.
Exp Eye Res ; 223: 109207, 2022 10.
Article in English | MEDLINE | ID: mdl-35926646

ABSTRACT

Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-ß-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.


Subject(s)
Epithelial-Mesenchymal Transition , Macular Degeneration , Cellular Senescence , Culture Media, Conditioned/pharmacology , Dasatinib/pharmacology , Epithelial Cells/metabolism , Humans , Hydrogen Peroxide/metabolism , Macular Degeneration/metabolism , Quercetin/pharmacology , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...