Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.665
Filter
1.
Acta Neuropathol Commun ; 12(1): 85, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822433

ABSTRACT

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Subject(s)
Dimethyl Sulfoxide , Mice, Inbred C57BL , Animals , Mice , Dimethyl Sulfoxide/pharmacology , Biomarkers/metabolism , Mice, Transgenic , Tomography, Optical Coherence , Retinal Rod Photoreceptor Cells/drug effects , Contrast Sensitivity/drug effects , Contrast Sensitivity/physiology , Disease Models, Animal , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Vision, Ocular/drug effects , Vision, Ocular/physiology
2.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743626

ABSTRACT

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Subject(s)
Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Myopia , Night Blindness , Rhodopsin , Animals , Night Blindness/genetics , Night Blindness/metabolism , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Mice , Rhodopsin/genetics , Rhodopsin/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Myopia/genetics , Myopia/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Darkness , Transducin/genetics , Transducin/metabolism , Gene Knock-In Techniques , Disease Models, Animal
3.
Sci Rep ; 14(1): 10498, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714794

ABSTRACT

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Subject(s)
AC133 Antigen , Animals , Mice , AC133 Antigen/metabolism , AC133 Antigen/genetics , Mice, Knockout , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism , Rhodopsin/genetics
4.
Ophthalmic Res ; 67(1): 301-310, 2024.
Article in English | MEDLINE | ID: mdl-38705136

ABSTRACT

INTRODUCTION: Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS: The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS: In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION: Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels , Genotype , Phenotype , Retinitis Pigmentosa , Visual Acuity , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/physiopathology , Male , Female , Cyclic Nucleotide-Gated Cation Channels/genetics , Retrospective Studies , Middle Aged , Adult , Young Adult , Adolescent , Electroretinography , Tomography, Optical Coherence/methods , Aged , Mutation , Child , Retinal Rod Photoreceptor Cells/metabolism , Fluorescein Angiography/methods , Genetic Association Studies , DNA Mutational Analysis , Pedigree , DNA/genetics
5.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38739438

ABSTRACT

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Subject(s)
Citric Acid Cycle , Glycolysis , Oxidative Phosphorylation , Retina , Animals , Mice , Retina/metabolism , Energy Metabolism , Metabolomics , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/metabolism
6.
PLoS One ; 19(5): e0300584, 2024.
Article in English | MEDLINE | ID: mdl-38709779

ABSTRACT

Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Transducin , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice , Transducin/metabolism , Transducin/genetics , Retina/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics
7.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648465

ABSTRACT

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Subject(s)
Disease Models, Animal , Gene Knock-In Techniques , Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Rhodopsin , Animals , Rhodopsin/metabolism , Rhodopsin/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Cilia/metabolism , Cilia/pathology
8.
Cell Rep ; 43(5): 114143, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38676924

ABSTRACT

Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function. Bulk visual chromophore regeneration in RPE-KO mice is 15-fold slower than in controls, accounting for their delayed rod dark adaptation and protection against retinal phototoxicity, whereas MG-KO mice have normal bulk visual chromophore regeneration and retinal light damage susceptibility. Cone pigment regeneration is significantly impaired in RPE-KO mice but mildly affected in MG-KO mice, disclosing an unexpectedly strong reliance of cone photoreceptors on the RPE-based visual cycle. These data reveal a dominant role for RPE-CRALBP in supporting rod and cone function and highlight the importance of RPE cell targeting for CRALBP gene therapies.


Subject(s)
Carrier Proteins , Mice, Knockout , Retinal Cone Photoreceptor Cells , Retinal Pigment Epithelium , Animals , Retinal Pigment Epithelium/metabolism , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Retinal Cone Photoreceptor Cells/metabolism , Ependymoglial Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice, Inbred C57BL , Retinal Pigments/metabolism
9.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652563

ABSTRACT

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.


Subject(s)
Organoids , Orphan Nuclear Receptors , Retinal Rod Photoreceptor Cells , Humans , Organoids/metabolism , Organoids/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retina/metabolism , Retina/pathology , Retina/growth & development , Cell Differentiation , Light Signal Transduction/genetics , Single-Cell Analysis
10.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38688030

ABSTRACT

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Subject(s)
Cyclic GMP , Neuroprotective Agents , Retinal Rod Photoreceptor Cells , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Retinal Degeneration/drug therapy , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/metabolism , Structure-Activity Relationship
11.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38521995

ABSTRACT

In brightness, the pupil constricts, while in darkness, the pupil dilates; this is known as the pupillary light response (PLR). The PLR is driven by all photoreceptors: rods and cones, which contribute to image-forming vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs), which mainly contribute to non-image-forming vision. Rods and cones cause immediate pupil constriction upon light exposure, whereas ipRGCs cause sustained constriction throughout light exposure. Recent studies have shown that covert attention modulated the initial PLR; however, it remains unclear whether the same holds for the sustained PLR. We tested this by leveraging ipRGCs' responsiveness to blue light, causing the most prominent sustained constriction. While replicating previous studies by showing that pupils constricted more when either directly looking at, or covertly attending to, bright as compared to dim stimuli (with the same color), we also found that the pupil constricted more when directly looking at blue as compared to red stimuli (with the same luminosity). Crucially, however, in two high-powered studies (n = 60), we did not find any pupil-size difference when covertly attending to blue as compared to red stimuli. This suggests that ipRGC-mediated pupil constriction, and possibly non-image-forming vision more generally, is not modulated by covert attention.


Subject(s)
Retinal Ganglion Cells , Vision, Ocular , Constriction , Retinal Ganglion Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Light , Photic Stimulation
12.
Cell Rep Med ; 5(4): 101459, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38518771

ABSTRACT

Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.


Subject(s)
Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Animals , Humans , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/therapy , Retinal Cone Photoreceptor Cells/metabolism , Disease Models, Animal
13.
FASEB J ; 38(5): e23518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38441532

ABSTRACT

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.


Subject(s)
Actins , Dyneins , Animals , Mice , Biological Transport , Cell Death , Dyneins/genetics , Retinal Rod Photoreceptor Cells
14.
Dev Biol ; 511: 39-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548147

ABSTRACT

The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.


Subject(s)
Retina , Retinal Ganglion Cells , Animals , Chick Embryo , Retinal Ganglion Cells/cytology , Retina/embryology , Retinal Cone Photoreceptor Cells/metabolism , Chickens , Neurogenesis/physiology , Fibroblast Growth Factor 8/metabolism , Fibroblast Growth Factor 8/genetics , In Situ Hybridization, Fluorescence , Fovea Centralis/embryology , Visual Acuity , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/cytology , Gene Expression Regulation, Developmental
15.
Curr Biol ; 34(7): 1492-1505.e6, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38508186

ABSTRACT

Vision under dim light relies on primary cilia elaborated by rod photoreceptors in the retina. This specialized sensory structure, called the rod outer segment (ROS), comprises hundreds of stacked, membranous discs containing the light-sensitive protein rhodopsin, and the incorporation of new discs into the ROS is essential for maintaining the rod's health and function. ROS renewal appears to be primarily regulated by extrinsic factors (light); however, results vary depending on different model organisms. We generated two independent transgenic mouse lines where rhodopsin's fate is tracked by a fluorescently labeled rhodopsin fusion protein (Rho-Timer) and show that rhodopsin incorporation into nascent ROS discs appears to be regulated by both external lighting cues and autonomous retinal clocks. Live-cell imaging of the ROS isolated from mice exposed to six unique lighting conditions demonstrates that ROS formation occurs in a periodic manner in cyclic light, constant darkness, and artificial light/dark cycles. This alternating bright/weak banding of Rho-Timer along the length of the ROS relates to inhomogeneities in rhodopsin density and potential points of structural weakness. In addition, we reveal that prolonged dim ambient light exposure impacts not only the rhodopsin content of new discs but also that of older discs, suggesting a dynamic interchange of material between new and old discs. Furthermore, we show that rhodopsin incorporation into the ROS is greatly altered in two autosomal recessive retinitis pigmentosa mouse models, potentially contributing to the pathogenesis. Our findings provide insights into how extrinsic (light) and intrinsic (retinal clocks and genetic mutation) factors dynamically regulate mammalian ROS renewal.


Subject(s)
Retinal Rod Photoreceptor Cells , Rhodopsin , Animals , Mice , Light , Mice, Transgenic , Reactive Oxygen Species/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Rod Cell Outer Segment/metabolism
16.
Mol Ther ; 32(5): 1445-1460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504520

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.


Subject(s)
Cadherin Related Proteins , Cadherins , Disease Models, Animal , Genetic Therapy , Nerve Tissue Proteins , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Retinal Rod Photoreceptor Cells , Animals , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Cadherins/genetics , Cadherins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/etiology , Humans , Genetic Therapy/methods , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Macular Degeneration/metabolism
17.
Exp Biol Med (Maywood) ; 249: 10024, 2024.
Article in English | MEDLINE | ID: mdl-38463390

ABSTRACT

This research aims to investigate the potential of using intrinsic optical signal (IOS) optoretinography (ORG) to objectively detect dark adaptation (DA) abnormalities related to rod photoreceptor degeneration. Functional optical coherence tomography (OCT) was employed in both wild-type (WT) and retinal degeneration 10 (rd10) mice to conduct this assessment. Dynamic OCT measurements captured the changes in retinal thickness and reflectance from light-to-dark transition. Comparative analysis revealed significant IOS alterations within the outer retina. Specifically, a reduction in thickness from external limiting membrane (ELM) peak to retinal pigment epithelium (RPE) peak was observed (WT: 1.13 ± 0.69 µm, 30 min DA; rd10: 2.64 ± 0.86 µm, 30 min DA), as well as a decrease in the intensity of the inner segment ellipsoid zone (EZ) in 30 min DA compared to light adaptation (LA). The reduction of relative EZ intensity was notable in rd10 after 5 min DA and in WT after 15 min DA, with a distinguishable difference between rd10 and WT after 10 min DA. Furthermore, our findings indicated a significant decrease in the relative intensity of the hypo-reflective band between EZ and RPE in rd10 retinas during DA, which primarily corresponds to the outer segment (OS) region. In conclusion, the observed DA-IOS abnormalities, including changes in ELM-RPE thickness, EZ, and OS intensity, hold promise as differentiators between WT and rd10 mice before noticeable morphological abnormalities occur. These findings suggest the potential of this non-invasive imaging technique for the early detection of dysfunction in retinal photoreceptors.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/diagnostic imaging , Dark Adaptation , Retina , Retinal Pigment Epithelium/diagnostic imaging , Retinal Rod Photoreceptor Cells
18.
Am J Pathol ; 194(5): 796-809, 2024 May.
Article in English | MEDLINE | ID: mdl-38395146

ABSTRACT

α-Synuclein (α-Syn) is a key determinator of Parkinson disease (PD) pathology, but synapse and microcircuit pathologies in the retina underlying visual dysfunction are poorly understood. Herein, histochemical and ultrastructural analyses and ophthalmologic measurements in old transgenic M83 PD model (mice aged 16 to 18 months) indicated that abnormal α-Syn aggregation in the outer plexiform layer (OPL) was associated with degeneration in the C-terminal binding protein 2 (CtBP2)+ ribbon synapses of photoreceptor terminals and protein kinase C alpha (PKCα)+ rod bipolar cell terminals, whereas α-Syn aggregates in the inner retina correlated with the reduction and degeneration of tyrosine hydroxylase- and parvalbumin-positive amacrine cells. Phosphorylated Ser129 α-synuclein expression was strikingly restricted in the OPL, with the most severe degenerations in the entire retina, including mitochondrial degeneration and loss of ribbon synapses in 16- to 18-month-old mice. These synapse- and microcircuit-specific deficits of the rod pathway at the CtBP2+ rod terminals and PKCα+ rod bipolar and amacrine cells were associated with attenuated a- and b-wave amplitudes and oscillatory potentials on the electroretinogram. They were also associated with the impairment of visual functions, including reduced contrast sensitivity and impairment of the middle range of spatial frequencies. Collectively, these findings demonstrate that α-Syn aggregates cause the synapse- and microcircuit-specific deficits of the rod pathway and the most severe damage to the OPL, providing the retinal synaptic and microcircuit basis for visual dysfunctions in PD.


Subject(s)
Protein Kinase C-alpha , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , Amacrine Cells/metabolism , Protein Kinase C-alpha/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Transcription Factors/metabolism
19.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38297980

ABSTRACT

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Subject(s)
Cone-Rod Dystrophies , Tubulin , Humans , Mice , Animals , Tubulin/genetics , Tubulin/metabolism , Cone-Rod Dystrophies/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Mutation
20.
Microsc Res Tech ; 87(5): 1009-1019, 2024 May.
Article in English | MEDLINE | ID: mdl-38192121

ABSTRACT

The structure of photoreceptors (PR) and the arrangement of neurons in the retina of red-tail shark were investigated using light and electron microscopy. The PR showed a mosaic arrangement and included double cones, single cones (SC), and single rods. Most cones occur as SC. The ratio between the number of cones and rods was 3:1.39 (±0.29). The rods were tall that reached the pigmented epithelium. The outer plexiform layer (OPL) showed a complex synaptic connection between the horizontal and photoreceptor terminals that were surrounded by Müller cell processes. Electron microscopy showed that the OPL possessed both cone pedicles and rod spherules. Each rod spherule consisted of a single synaptic ribbon within the invaginating terminal endings of the horizontal cell (hc) processes. In contrast, the cone pedicles possessed many synaptic ribbons within their junctional complexes. The inner nuclear layer consisted of bipolar, amacrine, Müller cells, and hc. Müller cells possessed intermediate filaments and cell processes that can reach the outer limiting membrane and form connections with each other by desmosomes. The ganglion cells were large multipolar cells with a spherical nucleus and Nissl' bodies in their cytoplasm. The presence of different types of cones arranged in a mosaic pattern in the retina of this species favors the spatial resolution of visual objects. RESEARCH HIGHLIGHTS: This is the first study demonstrating the structure and arrangement of retinal neurons of red-tail shark using light and electron microscopy. The current study showed the presence of different types of cones arranged in a mosaic pattern that may favor the spatial resolution of visual objects in this species. The bipolar, amacrine, Müller, and horizontal cells could be demonstrated.


Subject(s)
Electrons , Perciformes , Animals , Retina/ultrastructure , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...