Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Gene Ther ; 21(10): 913-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056608

ABSTRACT

The cat is emerging as a promising large animal model for preclinical testing of retinal dystrophy therapies, for example, by gene therapy. However, there is a paucity of studies investigating viral vector gene transfer to the feline retina. We therefore sought to study the tropism of recombinant adeno-associated viral (rAAV) vectors for the feline outer retina. We delivered four rAAV serotypes: rAAV2/2, rAAV2/5, rAAV2/8 and rAAV2/9, each expressing green fluorescent protein (GFP) under the control of a cytomegalovirus promoter, to the subretinal space in cats and, for comparison, mice. Cats were monitored for gene expression by in vivo imaging and cellular tropism was determined using immunohistochemistry. In cats, rAAV2/2, rAAV2/8 and rAAV2/9 vectors induced faster and stronger GFP expression than rAAV2/5 and all vectors transduced the retinal pigment epithelium (RPE) and photoreceptors. Unlike in mice, cone photoreceptors in the cat retina were more efficiently transduced than rod photoreceptors. In mice, rAAV2/2 only transduced the RPE whereas the other vectors also transduced rods and cones. These results highlight species differences in cellular tropism of rAAV vectors in the outer retina. We conclude that rAAV serotypes are suitable for use for retinal gene therapy in feline models, particularly when cone photoreceptors are the target cell.


Subject(s)
Dependovirus/physiology , Green Fluorescent Proteins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Cats , Dependovirus/genetics , Female , Genetic Therapy , Genetic Vectors/administration & dosage , Green Fluorescent Proteins/genetics , Injections, Intraocular , Male , Mice , Retinal Cone Photoreceptor Cells/virology , Retinal Rod Photoreceptor Cells/virology , Transduction, Genetic , Viral Tropism
2.
Vet Pathol ; 46(5): 810-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19429980

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a group of diseases that result in progressive and invariably fatal neurologic disease in both animals and humans. TSEs are characterized by the accumulation of an abnormal protease-resistant form of the prion protein in the central nervous system. Transmission of infectious TSEs is believed to occur via ingestion of prion protein-contaminated material. This material is also involved in the transmission of bovine spongiform encephalopathy ("mad cow disease") to humans, which resulted in the variant form of Creutzfeldt-Jakob disease. Abnormal prion protein has been reported in the retina of TSE-affected cattle, but despite these observations, the specific effect of abnormal prion protein on retinal morphology and function has not been assessed. The objective of this study was to identify and characterize potential functional and morphologic abnormalities in the retinas of cattle infected with a bovine-adapted isolate of transmissible mink encephalopathy. We used electroretinography and immunohistochemistry to examine retinas from 10 noninoculated and 5 transmissible mink encephalopathy-inoculated adult Holstein steers. Here we show altered retinal function, as evidenced by prolonged implicit time of the electroretinogram b-wave, in transmissible mink encephalopathy-infected cattle before the onset of clinical illness. We also demonstrate disruption of rod bipolar cell synaptic terminals, indicated by decreased immunoreactivity for the alpha isoform of protein kinase C and vesicular glutamate transporter 1, and activation of Müller glia, as evidenced by increased glial fibrillary acidic protein and glutamine synthetase expression, in the retinas of these cattle at the time of euthanasia due to clinical deterioration. This is the first study to identify both functional and morphologic alterations in the retinas of TSE-infected cattle. Our results support future efforts to focus on the retina for the development of new strategies for the diagnosis of TSEs.


Subject(s)
Cattle Diseases/virology , Eye Diseases/veterinary , Prion Diseases/veterinary , Prions/immunology , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/pathology , Electroretinography/veterinary , Eye Diseases/immunology , Eye Diseases/pathology , Eye Diseases/virology , Glial Fibrillary Acidic Protein/immunology , Glucose Transporter Type 1/immunology , Glutamate-Ammonia Ligase/immunology , Immunohistochemistry/veterinary , Male , Prion Diseases/immunology , Prion Diseases/pathology , Prion Diseases/virology , Protein Kinase C-alpha/immunology , Retinal Rod Photoreceptor Cells/immunology , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...