Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Graefes Arch Clin Exp Ophthalmol ; 260(10): 3131-3148, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35524799

ABSTRACT

PURPOSE: In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS: Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS: Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS: Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.


Subject(s)
Phosphatidylethanolamines , Retinal Degeneration , Animals , Docosahexaenoic Acids/metabolism , Murinae/genetics , Murinae/metabolism , Phosphatidylethanolamines/metabolism , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinaldehyde/analogs & derivatives , Swine
2.
J Biol Chem ; 296: 100187, 2021.
Article in English | MEDLINE | ID: mdl-33334878

ABSTRACT

The death of photoreceptor cells in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1) is closely associated with disruption in all-trans-retinal (atRAL) clearance in neural retina. In this study, we reveal that the overload of atRAL leads to photoreceptor degeneration through activating ferroptosis, a nonapoptotic form of cell death. Ferroptosis of photoreceptor cells induced by atRAL resulted from increased ferrous ion (Fe2+), elevated ACSL4 expression, system Xc- inhibition, and mitochondrial destruction. Fe2+ overload, tripeptide glutathione (GSH) depletion, and damaged mitochondria in photoreceptor cells exposed to atRAL provoked reactive oxygen species (ROS) production, which, together with ACSL4 activation, promoted lipid peroxidation and thereby evoked ferroptotic cell death. Moreover, exposure of photoreceptor cells to atRAL activated COX2, a well-accepted biomarker for ferroptosis onset. In addition to GSH supplement, inhibiting either Fe2+ by deferoxamine mesylate salt (DFO) or lipid peroxidation with ferrostatin-1 (Fer-1) protected photoreceptor cells from ferroptosis caused by atRAL. Abca4-/-Rdh8-/- mice exhibiting defects in atRAL clearance is an animal model for dry AMD and STGD1. We observed that ferroptosis was indeed present in neural retina of Abca4-/-Rdh8-/- mice after light exposure. More importantly, photoreceptor atrophy and ferroptosis in light-exposed Abca4-/-Rdh8-/- mice were effectively alleviated by intraperitoneally injected Fer-1, a selective inhibitor of ferroptosis. Our study suggests that ferroptosis is one of the important pathways of photoreceptor cell death in retinopathies arising from excess atRAL accumulation and should be pursued as a novel target for protection against dry AMD and STGD1.


Subject(s)
Ferroptosis , Lipid Peroxidation , Macular Degeneration/pathology , Photoreceptor Cells, Vertebrate/pathology , Retinaldehyde/analogs & derivatives , Animals , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress , Photoreceptor Cells, Vertebrate/metabolism , Reactive Oxygen Species/metabolism , Retinaldehyde/metabolism , Stargardt Disease/metabolism , Stargardt Disease/pathology
3.
Bioorg Med Chem Lett ; 30(18): 127421, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32717613

ABSTRACT

The discovery of how a photon is converted into a chemical signal is one of the most important achievements in the field of vision. A key molecule in this process is the visual chromophore retinal. Several eye diseases are attributed to the abnormal metabolism of retinal in the retina and the retinal pigment epithelium. Also, the accumulation of two toxic retinal derivatives, N-retinylidene-N-retinylethanolamine and the retinal dimer, can damage the retina leading to blindness. RPE65 (Retinal pigment epithelium-specific 65 kDa protein) is one of the central enzymes that regulates the metabolism of retinal and the formation of its toxic metabolites. Its inhibition might decrease the rate of the retina's degeneration by limiting the amount of retinal and its toxic byproducts. Two RPE65 inhibitors, (R)-emixustat and (R)-MB001, were recently developed for this purpose.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Phenyl Ethers/chemical synthesis , Propanolamines/chemical synthesis , Retinal Degeneration/drug therapy , cis-trans-Isomerases/antagonists & inhibitors , Alkanes/chemistry , Enzyme Inhibitors/pharmacology , Halogenation , Humans , Isomerism , Models, Molecular , Molecular Conformation , Pharmaceutical Preparations/chemical synthesis , Phenyl Ethers/pharmacology , Propanolamines/pharmacology , Retina/metabolism , Retinaldehyde/analogs & derivatives , Retinaldehyde/metabolism , Structure-Activity Relationship
4.
Chem Pharm Bull (Tokyo) ; 68(3): 265-272, 2020.
Article in English | MEDLINE | ID: mdl-32115534

ABSTRACT

In optogenetics, red-shifted channelrhodopsins (ChRs) are eagerly sought. We prepared six kinds of new chromophores with one double bond inserted into the polyene side chain of retinal (A1) or 3,4-didehydroretinal (A2), and examined their binding efficiency with opsins (ReaChR and ChrimsonR). All analogs bound with opsins to afford new ChRs. Among them, A2-10ex (an extra double bond is inserted at the C10-C11 position of A2) showed the greatest red-shift in the absorption spectrum of ChrimsonR, with a maximum absorbance at 654 nm (67 nm red-shifted from that of A1-ChrimsonR). Moreover, a long-wavelength spectral boundary of A2-10ex-ChrimsonR was extended to 756 nm, which reached into the far-red region (710-850 nm).


Subject(s)
Channelrhodopsins/chemistry , Channelrhodopsins/genetics , Retinaldehyde/analogs & derivatives , Retinaldehyde/chemical synthesis , Binding Sites , Channelrhodopsins/metabolism , HEK293 Cells , Humans , Molecular Structure , Retinaldehyde/chemistry , Structure-Activity Relationship
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117565, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31670041

ABSTRACT

Retinal is a flexible natural chromophore and widely present in organisms. The slender conjugated polyene structure retinal is conducive to entering protein structure. In this work, a novel turn-on fluorescent probe for Cu2+ based on retinal and phenylenediamine was designed and synthesized. The probe achieved recognition of copper ions in human serum complex protein environment. Furthermore, the high sensitivity, selectivity for Cu2+ and the sensing mechanism was also investigated.


Subject(s)
Copper/blood , Fluorescent Dyes/chemistry , Polyenes/chemistry , Retinaldehyde/analogs & derivatives , Cations, Divalent/analysis , Cations, Divalent/blood , Copper/analysis , Humans , Limit of Detection , Saline Solution/analysis , Spectrometry, Fluorescence/methods
6.
J Am Chem Soc ; 141(45): 18193-18203, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31621314

ABSTRACT

The conversion of light energy into work is essential to life on earth. Bacteriorhodopsin (bR), a light-activated proton pump in Archae, has served for many years as a model system for the study of this process in photoactive proteins. Upon absorption of a photon, its chromophore, the retinal protonated Schiff base (RPSB), isomerizes from its native all-trans form to a 13-cis form and pumps a proton out of the cell in a process that is coupled to eventual ATP synthesis. Despite numerous time-resolved spectroscopic studies over the years, the details of the photodynamics of bR on the excited state, particularly the characterization of the I fluorescent state, the time-resolved reaction mechanism, and the role of the counterion cluster of RPSB, remain uncertain. Here, we use ab initio multiple spawning (AIMS) with spin-restricted ensemble Kohn-Sham (REKS) theory to simulate the nonadiabatic dynamics of the ultrafast photoreaction in bR. The excited state dynamics can be partitioned into three distinct phases: (1) relaxation away from the Franck-Condon region dominated by changes in retinal bond length alternation, (2) dwell time on the excited state in the I fluorescent state featuring an untwisted, bond length inverted RPSB, and (3) rapid torsional evolution to the conical intersection after overcoming a small excited state barrier. We fully characterize the I fluorescent state and the excited state barrier that hinders direct evolution to the conical intersection following photoexcitation. We also find that photoisomerization is accompanied by weakening of the interaction between RPSB and its counterion cluster. However, in contradiction with a recent time-resolved X-ray experiment, hydrogen bond cleavage is not necessary to reproduce the observed photoisomerization dynamics.


Subject(s)
Bacteriorhodopsins/chemistry , Retinaldehyde/analogs & derivatives , Schiff Bases/chemistry , Bacteriorhodopsins/radiation effects , Density Functional Theory , Fluorescence , Halobacterium salinarum/chemistry , Light , Models, Chemical , Models, Molecular , Retinaldehyde/radiation effects , Schiff Bases/radiation effects
7.
Curr Biol ; 29(17): 2961-2969.e4, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31447373

ABSTRACT

Rhodopsins, the major light-detecting molecules of animal visual systems [1], consist of opsin apoproteins that covalently bind a retinal chromophore with a conserved lysine residue [1, 2]. In addition to capturing photons, this chromophore contributes to rhodopsin maturation [3, 4], trafficking [3, 4], and stabilization [5], and defects in chromophore synthesis and recycling can cause dysfunction of the retina and dystrophy [6-9]. Indications that opsin apoproteins alone might have biological roles have come from archaebacteria and platyhelminths, which present opsin-like proteins that lack the chromophore binding site and are deemed to function independently of light [10, 11]. Light-independent sensory roles have been documented for Drosophila opsins [12-15], yet also these unconventional opsin functions are thought to require chromophore binding [12, 13, 15]. Unconjugated opsin apoproteins act as phospholipid scramblases in mammalian photoreceptor disks [16], yet chromophore-independent roles of opsin apoproteins outside of eyes have, to the best of our knowledge, hitherto not been described. Drosophila chordotonal mechanoreceptors require opsins [13, 15], and we find that their function remains uncompromised by nutrient carotenoid depletion. Disrupting carotenoid uptake and cleavage also left the mechanoreceptors unaffected, and manipulating the chromophore attachment site of the fly's major visual opsin Rh1 impaired photoreceptor, but not mechanoreceptor, function. Notwithstanding this chromophore independence, some proteins that process and recycle the chromophore in the retina are also required in mechanoreceptors, including visual cycle components that recycle the chromophore upon its photoisomerization. Our results thus establish biological function for unconjugated opsin apoproteins outside of eyes and, in addition, document chromophore-independent roles for chromophore pathway components.


Subject(s)
Apoproteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Mechanoreceptors/metabolism , Opsins/metabolism , Retinaldehyde/analogs & derivatives , Animals , Retinaldehyde/metabolism
8.
J Phys Chem B ; 123(19): 4242-4250, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30998011

ABSTRACT

Microbial rhodopsins constitute a key protein family in optobiotechnological applications such as optogenetics and voltage imaging. Spectral tuning of rhodopsins into the deep-red and near-infrared spectral regions is of great demand in such applications because more bathochromic light into the near-infrared range penetrates deeper in living tissue. Recently, retinal analogues have been successfully used in ion transporting and fluorescent rhodopsins to achieve red-shifted absorption, activity, and emission properties. Understanding their photochemical mechanism is essential for further design of appropriate retinal analogues but is yet only poorly understood for most retinal analogue pigments. Here, we report the photoreaction dynamics of red-shifted analogue pigments of the proton pump proteorhodopsin (PR) containing A2 (all- trans-3,4-dehydroretinal), MOA2 (all- trans-3-methoxy-3,4-dehydroretinal), or DMAR (all- trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto- to submillisecond transient absorption spectroscopy. We found that the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510 nm light illumination, which is comparable to the native retinal (A1) in PR. On the other hand, the deprotonation of the A2 pigment Schiff base was observed with a dominant time constant of 67 µs, which is significantly slower than the A1 pigment. In the MOA2 pigment, no isomerization or photoproduct formation was detected upon 520 nm excitation, implying that all the excited molecules returned to the initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very slow excited state dynamics similar to the previously studied MMAR pigment, but only very little photoproduct was formed. The low efficiency of the photoproduct formation likely is the reason why DMAR analogue pigments of PR showed very weak proton pumping activity.


Subject(s)
Retinaldehyde/analogs & derivatives , Rhodopsins, Microbial/chemistry , Light , Retinaldehyde/radiation effects , Rhodopsins, Microbial/radiation effects
9.
PLoS One ; 13(12): e0209506, 2018.
Article in English | MEDLINE | ID: mdl-30586409

ABSTRACT

Microbial rhodopsins have become an important tool in the field of optogenetics. However, effective in vivo optogenetics is in many cases severely limited due to the strong absorption and scattering of visible light by biological tissues. Recently, a combination of opsin site-directed mutagenesis and analog retinal substitution has produced variants of proteorhodopsin which absorb maximally in the near-infrared (NIR). In this study, UV-Visible-NIR absorption and resonance Raman spectroscopy were used to study the double mutant, D212N/F234S, of green absorbing proteorhodopsin (GPR) regenerated with MMAR, a retinal analog containing a methylamino modified ß-ionone ring. Four distinct subcomponent absorption bands with peak maxima near 560, 620, 710 and 780 nm are detected with the NIR bands dominant at pH <7.3, and the visible bands dominant at pH 9.5. FT-Raman using 1064-nm excitation reveal two strong ethylenic bands at 1482 and 1498 cm-1 corresponding to the NIR subcomponent absorption bands based on an extended linear correlation between λmax and γC = C. This spectrum exhibits two intense bands in the fingerprint and HOOP mode regions that are highly characteristic of the O640 photointermediate from the light-adapted bacteriorhodopsin photocycle. In contrast, 532-nm excitation enhances the 560-nm component, which exhibits bands very similar to light-adapted bacteriorhodopsin and/or the acid-purple form of bacteriorhodopsin. Native GPR and its mutant D97N when regenerated with MMAR also exhibit similar absorption and Raman bands but with weaker contributions from the NIR absorbing components. Based on these results it is proposed that the NIR absorption in GPR-D212N/F234S with MMAR arises from an O-like chromophore, where the Schiff base counterion D97 is protonated and the MMAR adopts an all-trans configuration with a non-planar geometry due to twists in the conjugated polyene segment. This configuration is characterized by extensive charge delocalization, most likely involving nitrogens atoms in the MMAR chromophore.


Subject(s)
Bacteriorhodopsins/chemistry , Rhodopsins, Microbial/chemistry , Light , Mutation , Optogenetics/methods , Retinaldehyde/analogs & derivatives , Retinaldehyde/chemistry , Rhodopsins, Microbial/genetics , Scattering, Radiation , Spectrum Analysis, Raman , Stereoisomerism
10.
Phys Chem Chem Phys ; 20(48): 30174-30188, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30484791

ABSTRACT

19F nuclei are useful labels in solid-state NMR studies, since their chemical shift and tensor elements are very sensitive to the electrostatic and space-filling properties of their local environment. In this study we have exploited a fluorine substituent, strategically placed at the C-12-position of 11-cis retinal, the chromophore of visual rhodopsins. This label was used to explore the local environment of the chromophore in the ground state of bovine rhodopsin and its active photo-intermediate Meta II. In addition, the chemical shift and tensor elements of the chromophore in the free state in a membrane environment and the bound state in the protein were determined. Upon binding of the chromophore into rhodopsin and Meta II, the isotropic chemical shift changes in the opposite direction by +9.7 and -8.4 ppm, respectively. An unusually large isotropic shift difference of 35.9 ppm was observed between rhodopsin and Meta II. This partly originates in the light-triggered 11-cis to all-trans isomerization of the chromophore. The other part reflects the local conformational rearrangements in the chromophore and the binding pocket. These NMR data were correlated with the available X-ray structures of rhodopsin and Meta II using bond polarization theory. For this purpose hydrogen atoms have to be inserted and hereto a family of structures were derived that best correlated with the well-established 13C chemical shifts. Based upon these structures, a 12-F derivative was obtained that best corresponded with the experimentally determined 19F chemical shifts and tensor elements. The combined data indicate strong changes in the local environment of the C-12 position and a substantially different interaction pattern with the protein in Meta II as compared to rhodopsin.


Subject(s)
Retinaldehyde/analogs & derivatives , Retinaldehyde/chemistry , Rhodopsin/chemistry , Animals , Cattle , Fluorine/chemistry , Light , Magnetic Resonance Spectroscopy , Models, Chemical , Retinaldehyde/radiation effects , Rhodopsin/isolation & purification , Rhodopsin/radiation effects
11.
J Phys Chem Lett ; 9(22): 6469-6474, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30376338

ABSTRACT

Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.


Subject(s)
Retinaldehyde/analogs & derivatives , Rhodopsins, Microbial/chemistry , Fluorescence , Hydrogen-Ion Concentration , Protons , Schiff Bases/chemistry , Spectrum Analysis, Raman
12.
Arch Pharm Res ; 41(10): 1009-1018, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30117083

ABSTRACT

Abnormal accumulation of the free-form all-trans-retinal (atRAL), a major intermediate of human visual cycle, is considered to be a key cause of retinal pigment epithelial (RPE) dysfunction in the pathogenesis of retinal degenerative diseases such as age-related macular degeneration (AMD). Paeoniflorin (PF), a monoterpene glucoside isolated from Paeonia lactiflora Pall., has been used in clinical treatment of retinal degenerative diseases in China for several years; however, the underlying mechanism remains unclear. The aim of this study is to investigate the protective effect of PF against atRAL toxicity in human ARPE-19 cells and its molecular mechanism. The results of our study showed that the pre-treatment of PF dose-dependently attenuated atRAL-induced cell injury by the reduction of Nox1/ROS-associated oxidative stress, mitochondrial dysfunction and GRP78-PERK-eIF2α-ATF4-CHOP-regulated endoplasmic reticulum (ER) stress in ARPE-19 cells. Additionally, our data showed that PF mainly exerted its activity via triggering calcium-calmodulin dependent protein kinase II (CaMKII)-mediated activation of AMP-activated protein kinase (AMPK). AMPK inhibition significantly reversed the protective effect of PF against atRAL toxicity in ARPE-19 cells. Overall, our findings provided the novel mechanism of PF protecting human RPE cells, which may prevent the progression of retinal degenerative diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Endoplasmic Reticulum Stress/drug effects , Glucosides/pharmacology , Mitochondria/drug effects , Monoterpenes/pharmacology , Oxidative Stress/drug effects , Retinal Pigment Epithelium/cytology , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Enzyme Activation/drug effects , Humans , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/drug effects , Retinaldehyde/analogs & derivatives , Retinaldehyde/antagonists & inhibitors , Retinaldehyde/pharmacology
13.
Biochemistry ; 57(38): 5544-5556, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30153419

ABSTRACT

As optogenetic studies become more popular, the demand for red-shifted channelrhodopsin is increasing, because blue-green light is highly scattered or absorbed by animal tissues. In this study, we developed a red-shifted channelrhodopsin by elongating the conjugated double-bond system of the native chromophore, all -trans-retinal (ATR1). Analogues of ATR1 and ATR2 (3,4-didehydro-retinal) in which an extra C═C bond is inserted at different positions (C6-C7, C10-C11, and C14-C15) were synthesized and introduced into a widely used channelrhodopsin variant, C1C2 (a chimeric protein of channelrhodopsin-1 and channelrhodopsin-2 from Chlamydomonas reinhardtii). C1C2 bearing these retinal analogues as chromophores showed broadened absorption spectra toward the long-wavelength side and photocycle intermediates similar to the conducting state of channelrhodopsin. However, the position of methyl groups on the retinal polyene chain influenced the yield of the pigment, absorption maximum, and photocycle pattern to a variable degree. The lack of a methyl group at position C9 of the analogues considerably decreased the yield of the pigment, whereas a methyl group at position C15 exhibited a large red-shift in the absorption spectra of the C1C2 analogue. Expansion of the chromophore binding pocket by mutation of aromatic residue Phe265 to Ala improved the yield of the pigment bearing elongated ATR1 analogues without a great alteration of the photocycle kinetics of C1C2. Our results show that elongation of the conjugated double-bond system of retinal is a promising strategy for improving the ability of channelrhodopsin to absorb long-wavelength light passing through the biological optical window.


Subject(s)
Channelrhodopsins/chemistry , Channelrhodopsins/metabolism , Chlamydomonas reinhardtii/metabolism , Retinaldehyde/analogs & derivatives , Retinaldehyde/metabolism , Animals , Channelrhodopsins/genetics , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation
14.
J Biol Chem ; 293(37): 14507-14519, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30049796

ABSTRACT

Free all-trans-retinal (atRAL) and retinal pigment epithelium (RPE) lipofuscin are both considered to play etiological roles in Stargardt disease and age-related macular degeneration. A2E and all-trans-retinal dimer (atRAL-dimer) are two well characterized bisretinoid constituents of RPE lipofuscin. In this study, we found that, after treatment of primary porcine RPE (pRPE) cells with atRAL, atRAL-dimer readily formed and accumulated in a concentration- and time-dependent manner, but A2E was barely detected. Cell-based assays revealed that atRAL, the precursor of atRAL-dimer, significantly altered the morphology of primary pRPE cells and decreased cell viability at a concentration of 80 µm regardless of light exposure. By contrast, atRAL-dimer was not cytotoxic and phototoxic to primary pRPE cells. Compared with atRAL and A2E, atRAL-dimer was more vulnerable to light, followed by the generation of its photocleaved products. Moreover, we observed the presence of atRAL-dimer in reaction mixtures of atRAL with porcine rod outer segments (ROS), RPE/choroid, or neural retina. Taken together, we here proposed an alternative metabolic/antidotal pathway of atRAL in the retina: atRAL that evades participation of the visual (retinoid) cycle undergoes a condensation reaction to yield atRAL-dimer in both ROS and RPE. Translocation of atRAL, all-trans N-retinylidene-phosphatidylethanolamine (NR-PE), atRAL-dimer, and photocleavage products of atRAL-dimer from ROS into RPE is accomplished by phagocytosing shed ROS on a daily basis. Without causing damage to RPE cells, light breaks up total atRAL-dimer within RPE cells to release low-molecular-weight photocleavage fragments. The latter, together with ROS-atRAL-dimer photocleavage products, may easily move across membranes and thereby be metabolically eliminated.


Subject(s)
Retinal Pigment Epithelium/metabolism , Retinaldehyde/analogs & derivatives , Retinaldehyde/metabolism , Animals , Cell Survival , Cells, Cultured , Hydrolysis , Light , Metabolic Networks and Pathways , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/radiation effects , Rod Cell Outer Segment/metabolism , Swine , Tandem Mass Spectrometry
15.
Chembiochem ; 19(12): 1288-1295, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29645331

ABSTRACT

Mutants of human cellular retinol-binding protein II (hCRBPII) were engineered to bind a julolidine retinal analogue for the purpose of developing a ratiometric pH sensor. The design relied on the electrostatic influence of a titratable amino acid side chain, which affects the absorption and, thus, the emission of the protein/fluorophore complex. The ratio of emissions obtained at two excitation wavelengths that correspond to the absorption of the two forms of the protein/fluorophore complex, leads to a concentration-independent measure of pH.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/metabolism , Retinaldehyde/metabolism , Retinol-Binding Proteins, Cellular/metabolism , Fluorescence , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis, Site-Directed/methods , Protein Conformation , Retinaldehyde/analogs & derivatives , Retinol-Binding Proteins, Cellular/chemistry , Retinol-Binding Proteins, Cellular/genetics , Spectrometry, Fluorescence/methods
16.
Angew Chem Int Ed Engl ; 57(22): 6501-6506, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29601118

ABSTRACT

Ab initio DFT computations reveal that the essential structural and photophysical features of the conjugated π-electron system of retinal and carotenoids are dictated by "innocent" methyl substituents. These methyl groups shape the conformation and symmetry of the isoprenoid chromophores by causing a sigmoidal distortion of the polyene skeleton and increasing its flexibility, which facilitates fitting to their binding pockets in proteins. Comparison of in vacuo conformations of the chromophores with their native (protein-bound) conformations showed, surprisingly, that the peripheral groups and interactions with the protein environment are much less significant than the methyl side groups in tuning their structural features. The methyl side groups also contribute to a loss of symmetry elements specific to linear polyenes. In effect, the symmetry-imposed restrictions on the chromophore electronic properties are disabled, which is of tremendous relevance to their photophysics. This is evidenced by their non-negligible permanent dipole moments and by the simulated and experimentally measured circular dichroism spectra, which necessarily reflect the chirality of the conjugated π-electron system.


Subject(s)
Terpenes/chemistry , Density Functional Theory , Lycopene/chemistry , Molecular Conformation , Retinaldehyde/analogs & derivatives , Retinaldehyde/chemistry , beta Carotene/chemistry
17.
Invest Ophthalmol Vis Sci ; 58(2): 1063-1075, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28192797

ABSTRACT

Purpose: Nondegradable fluorophores that accumulate as deleterious lipofuscin of RPE are involved in pathological mechanisms leading to the degeneration of RPE in AMD. A2E, a major component of RPE lipofuscin, could cause damage to RPE cells. Nevertheless, all-trans-retinal dimer (atRAL dimer) was found to be much more abundant than that of A2E in eyes of Abca4-/-Rdh8-/- double-knockout (DKO) mice, a rodent model showing the typical characteristics of retinopathies in AMD patients. Our aim was to elucidate the effect and mechanism of atRAL dimer-induced RPE degeneration. Methods: Eyes harvested from C57BL/6J wild-type (WT) and Abca4-/-Rdh8-/- DKO mice were examined by HPLC. Cellular uptake, subcellular localization, 5-bromo-2-deoxyuridine (BrdU), Cdc25C, DNA strand breaks, mitochondrial membrane potential (ΔΨm), and cytochrome c were analyzed by fluorescence microscopy. Cellular toxicity was assayed by lactate dehydrogenase (LDH) assay and dead cell staining. Apoptosis and cell-cycle stages were detected by flow cytometry. Furthermore, in vitro and in vivo expression of proteins associated with cell cycle and apoptosis was measured by immunoblot assays. Results: All-trans-retinal dimer clearly could damage RPE cell membrane and inhibit the proliferation of RPE cells as well as induce DNA damage and cell-cycle arrest at the G2/M phase via activating the ATM/ATR-Chk2-p53 signaling pathway. Moreover, this di-retinal adduct triggered mitochondrion-associated apoptosis in RPE cells. Evidence from the cell-based experiments was also corroborated by a remarkable abnormality in expression of proteins associated with cell cycle (Cyclin B1 and Cdc2) and apoptosis (p53, Bcl-2 and Bax) in the RPE of Abca4-/-Rdh8-/- DKO mice. Conclusions: These findings suggest that atRAL dimer that accumulates beyond a critical level, facilitates age-dependent RPE degeneration.


Subject(s)
Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinaldehyde/analogs & derivatives , ATP-Binding Cassette Transporters/genetics , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Chromatography, High Pressure Liquid , Disease Models, Animal , Flow Cytometry , Humans , Immunoblotting , Lipofuscin/metabolism , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Retina/metabolism , Retina/pathology , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Retinaldehyde/metabolism
18.
J Am Chem Soc ; 139(6): 2338-2344, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28094925

ABSTRACT

Proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) are retinal-based light-driven proton pumps that absorb visible light (maxima at 520-540 nm). Shifting the action spectra of these proton pumps beyond 700 nm would generate new prospects in optogenetics, membrane sensor technology, and complementation of oxygenic phototrophy. We therefore investigated the effect of red-shifting analogues of retinal, combined with red-shifting mutations, on the spectral properties and pump activity of the resulting pigments. We investigated a variety of analogues, including many novel ones. One of the novel analogues we tested, 3-methylamino-16-nor-1,2,3,4-didehydroretinal (MMAR), produced exciting results. This analogue red-shifted all of the rhodopsin variants tested, accompanied by a strong broadening of the absorbance band, tailing out to 850-950 nm. In particular, MMAR showed a strong synergistic effect with the PR-D212N,F234S double mutant, inducing an astonishing 200 nm red shift in the absorbance maximum. To our knowledge, this is by far the largest red shift reported for any retinal protein. Very importantly, all MMAR-containing holoproteins are the first rhodopsins retaining significant pump activity under near-infrared illumination (730 nm light-emitting diode). Such MMAR-based rhodopsin variants present very promising opportunities for further synthetic biology modification and for a variety of biotechnological and biophysical applications.


Subject(s)
Infrared Rays , Proton Pumps/chemistry , Retinaldehyde/chemistry , Molecular Structure , Proton Pumps/genetics , Retinaldehyde/analogs & derivatives
19.
Toxicology ; 371: 41-48, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27751755

ABSTRACT

Effective clearance of all-trans-retinal (atRAL) from retinal pigment epithelial (RPE) cells is important for avoiding its cytotoxicity. However, the metabolism of atRAL in RPE cells is poorly clarified. The present study was designed to analyze metabolic products of atRAL and to compare the cytotoxicity of atRAL versus its derivative all-trans-retinal dimer (atRAL-dimer) in human RPE cells. We found that all-trans-retinol (atROL) and a mixture of atRAL condensation metabolites including atRAL-dimer and A2E were generated after incubating RPE cells with atRAL for 6h, and the amount of atRAL-dimer was significantly higher than that of A2E. In the eyes of Rdh8-/- Abca4-/- mice, a mouse model with defects in retinoid cycle that displays some symbolic characteristics of age-related macular degeneration (AMD), the level of atRAL-dimer was increased compared to wild-type mice, and was even much greater than that of A2E & isomers. The cytotoxicity of atRAL-dimer was reduced compared with its precursor atRAL. The latter could provoke intracellular reactive oxygen species (ROS) overproduction, increase the mRNA expression of several oxidative stress related genes (Nrf2, HO-1, and γ-GCSh), and induce ΔΨm loss in RPE cells. By contrast, the abilities of atRAL-dimer to induce intracellular ROS and oxidative stress were much weaker versus that of concentration-matched atRAL, and atRAL-dimer exhibited no toxic effect on mitochondrial function at higher concentrations. In conclusion, the formation of atRAL-dimer during atRAL metabolic process ameliorates the cytotoxicity of atRAL by reducing oxidative stress.


Subject(s)
Cell Survival/drug effects , Epithelial Cells/drug effects , Retinal Pigment Epithelium/drug effects , Retinaldehyde/analogs & derivatives , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Alcohol Oxidoreductases/biosynthesis , Alcohol Oxidoreductases/genetics , Animals , Cell Line , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/prevention & control , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Knockout , Mitochondria/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinaldehyde/chemistry , Retinaldehyde/toxicity
20.
PLoS One ; 11(5): e0155339, 2016.
Article in English | MEDLINE | ID: mdl-27167972

ABSTRACT

Opn5 is a group within the opsin family of proteins that is responsible for visual and non-visual photoreception in animals. It consists of several subgroups, including Opn5m, the only subgroup containing members found in most vertebrates, including mammals. In addition, recent genomic information has revealed that some ray-finned fishes carry paralogous genes of Opn5m while other fishes have no such genes. Here, we report the molecular properties of the opsin now called Opn5m2 and its distributions in both the retina and brain. Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal. Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels showed a gradient along the dorsal-ventral axis of the retina, and preferential expression was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a similar gradient with preferential expression observed in the dorsal retina. Opn5m expression was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m expression in several brain regions, including the hypothalamus, of these fish species. Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in limited brain regions of spotted gar. These results suggest that ray-finned fishes can generally utilize UV light information for non-image-forming photoreception in a wide range of cells in the retina and brain.


Subject(s)
Brain/metabolism , Opsins/metabolism , Retina/metabolism , Retinaldehyde/analogs & derivatives , Retinaldehyde/metabolism , Vision, Ocular , Animal Fins , Animals , Brain/cytology , Brain/radiation effects , Gene Expression Regulation , Ligands , Opsins/genetics , Organ Specificity , Oryzias , Photoreceptor Cells, Vertebrate , Phylogeny , Protein Binding , Retina/cytology , Retina/radiation effects , Species Specificity , Ultraviolet Rays , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...