Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.957
Filter
1.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Article in English | MEDLINE | ID: mdl-38725091

ABSTRACT

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Subject(s)
HIV Reverse Transcriptase , Immunodeficiency Virus, Feline , Reverse Transcriptase Inhibitors , Animals , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Cats , Immunodeficiency Virus, Feline/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Alkynes/chemistry , Alkynes/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Molecular Docking Simulation , Benzoxazines/chemistry , Benzoxazines/pharmacology
2.
Bioorg Chem ; 147: 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593532

ABSTRACT

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Subject(s)
Anti-HIV Agents , Biphenyl Compounds , Drug Design , HIV Reverse Transcriptase , HIV-1 , Quinazolines , Reverse Transcriptase Inhibitors , Solubility , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship
3.
Nat Commun ; 15(1): 3644, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684655

ABSTRACT

Despite expanded antiretroviral therapy (ART) in South Africa, HIV-1 transmission persists. Integrase strand transfer inhibitors (INSTI) and long-acting injectables offer potential for superior viral suppression, but pre-existing drug resistance could threaten their effectiveness. In a community-based study in rural KwaZulu-Natal, prior to widespread INSTI usage, we enroled 18,025 individuals to characterise HIV-1 drug resistance and transmission networks to inform public health strategies. HIV testing and reflex viral load quantification were performed, with deep sequencing (20% variant threshold) used to detect resistance mutations. Phylogenetic and geospatial analyses characterised transmission clusters. One-third of participants were HIV-positive, with 21.7% having detectable viral loads; 62.1% of those with detectable viral loads were ART-naïve. Resistance to older reverse transcriptase (RT)-targeting drugs was found, but INSTI resistance remained low (<1%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, particularly to rilpivirine (RPV) even in ART-naïve individuals, was concerning. Twenty percent of sequenced individuals belonged to transmission clusters, with geographic analysis highlighting higher clustering in peripheral and rural areas. Our findings suggest promise for INSTI-based strategies in this setting but underscore the need for RPV resistance screening before implementing long-acting cabotegravir (CAB) + RPV. The significant clustering emphasises the importance of geographically targeted interventions to effectively curb HIV-1 transmission.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Phylogeny , Rural Population , Viral Load , Humans , HIV Infections/transmission , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/epidemiology , Drug Resistance, Viral/genetics , South Africa/epidemiology , HIV-1/genetics , HIV-1/drug effects , Female , Male , Adult , Middle Aged , Viral Load/drug effects , Young Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Adolescent , Mutation , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use
4.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675962

ABSTRACT

BACKGROUND: The global scale-up of antiretroviral treatment (ART) offers significant health benefits by suppressing HIV-1 replication and increasing CD4 cell counts. However, incomplete viral suppression poses a potential threat for the emergence of drug resistance mutations (DRMs), limiting ART options, and increasing HIV transmission. OBJECTIVE: We investigated the patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) among HIV-1 patients in Portugal. METHODS: Data were obtained from 1050 HIV-1 patient samples submitted for HIV drug resistance (HIVDR) testing from January 2022 to June 2023. Evaluation of DRM affecting viral susceptibility to nucleoside/tide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) was performed using an NGS technology, the Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay. RESULTS: About 71% of patients were ART naïve and 29% were experienced. Overall, 20% presented with any DRM. The prevalence of TDR and ADR was 12.6% and 41.1%, respectively. M184V, T215S, and M41L mutations for NRTI, K103N for NNRTI, and M46I/L for PIs were frequent in naïve and treated patients. E138K and R263K mutations against INSTIs were more frequent in naïve than treated patients. TDR and ADR to INSTIs were 0.3% and 7%, respectively. Patients aged 50 or over (OR: 1.81, p = 0.015), originating from Portuguese-speaking African countries (PALOPs) (OR: 1.55, p = 0.050), HIV-1 subtype G (OR: 1.78, p = 0.010), and with CD4 < 200 cells/mm3 (OR: 1.70, p = 0.043) were more likely to present with DRMs, while the males (OR: 0.63, p = 0.003) with a viral load between 4.1 to 5.0 Log10 (OR: 0.55, p = 0.003) or greater than 5.0 Log10 (OR: 0.52, p < 0.001), had lower chances of presenting with DRMs. CONCLUSIONS: We present the first evidence on TDR and ADR to INSTI regimens in followed up patients presenting for healthcare in Portugal. We observed low levels of TDR to INSTIs among ART-naïve and moderate levels in ART-exposed patients. Regimens containing PIs could be an alternative second line in patients with intermediate or high-level drug resistance, especially against second-generation INSTIs (dolutegravir, bictegravir, and cabotegravir).


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , HIV-1 , High-Throughput Nucleotide Sequencing , Mutation , Humans , HIV-1/genetics , HIV-1/drug effects , Portugal/epidemiology , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/epidemiology , Drug Resistance, Viral/genetics , Male , Female , Middle Aged , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Genotype , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Young Adult , Aged
5.
J Med Chem ; 67(8): 6570-6584, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38613773

ABSTRACT

NNRTI is an important component of the highly active antiretroviral therapy (HAART), but the rapid emergence of drug resistance and poor pharmacokinetics limited their clinical application. Herein, a series of novel aryl triazolone dihydropyridines (ATDPs) were designed by structure-guided design with the aim of improving drug resistance profiles and pharmacokinetic profiles. Compound 10n (EC50 = 0.009-17.7 µM) exhibited the most active potency, being superior to or comparable to that of doravirine (DOR) against the whole tested viral panel. Molecular docking was performed to clarify the reason for its higher resistance profiles. Moreover, 10n demonstrated excellent pharmacokinetic profile (T1/2 = 5.09 h, F = 108.96%) compared that of DOR (T1/2 = 4.4 h, F = 57%). Additionally, 10n was also verified to have no in vivo acute or subacute toxicity (LD50 > 2000 mg/kg), suggesting that 10n is worth further investigation as a novel oral NNRTIs for HIV-1 therapy.


Subject(s)
Anti-HIV Agents , Dihydropyridines , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors , Triazoles , HIV-1/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/pharmacokinetics , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Dihydropyridines/pharmacokinetics , Structure-Activity Relationship , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Animals , Male , Drug Discovery , Molecular Structure , Mice
6.
J Antimicrob Chemother ; 79(5): 1157-1163, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546761

ABSTRACT

BACKGROUND: Monitoring the trends of pre-treatment drug resistance (PDR) and resistance-associated mutations (RAMs) among antiretroviral-naïve people with HIV (PWH) is important for the implementation of HIV treatment and control programmes. We analysed the trends of HIV-1 PDR after the introduction of second-generation integrase strand-transfer inhibitors (INSTIs) in 2016 in Taiwan, when single-tablet regimens of non-nucleoside reverse-transcriptase inhibitor (NNRTI-) and INSTI-based antiretroviral therapy became the preferred treatments. MATERIALS AND METHODS: In this multicentre study, we included newly diagnosed, antiretroviral-naïve PWH who underwent tests for RAMs between 2016 and 2022. Pre-treatment genotypic resistance testing was performed, along with HIV-1 subtyping and determinations of plasma HIV RNA load and CD4 lymphocyte counts. RAMs were analysed using the Stanford University HIV Drug Resistance Database and only RAMs conferring at least low-level resistance were included. RESULTS: From 2016 to 2022, pre-treatment blood samples from 3001 newly diagnosed PWH, which constituted 24.3% of newly diagnosed PWH in Taiwan during the study period, were tested. Of the PWH with analysable gene sequences, the HIV-1 PDR prevalence to NNRTIs, nucleoside reverse-transcriptase inhibitors (NRTIs), first- and second-generation INSTIs and PIs was 10.0%, 2.1%, 2.5%, 0.6% and 0.4%, respectively. While the trends of PDR remained stable for NRTIs, INSTIs and PIs, there was a significantly increasing trend of PDR to NNRTIs from 6.0% in 2016% to 13.1% in 2022 (P = 0.001). CONCLUSIONS: After the introduction of second-generation INSTIs in Taiwan, the trends of HIV-1 PDR to NRTIs and INSTIs remained low. Furthermore, there was no significant decrease of the prevalence of PDR toward NNRTIs between 2016 and 2022.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Viral Load , Humans , Taiwan/epidemiology , HIV-1/drug effects , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/virology , Male , Drug Resistance, Viral/genetics , Female , Adult , Middle Aged , Mutation , Genotype , HIV Integrase Inhibitors/therapeutic use , HIV Integrase Inhibitors/pharmacology , CD4 Lymphocyte Count , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Young Adult , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , RNA, Viral/genetics
7.
Am J Trop Med Hyg ; 110(4): 713-718, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38442417

ABSTRACT

India has the third-largest number of people living with HIV (PLHIV) in the world. A national program provides free access to standard uniform antiretroviral therapy. However, the program is not monitored by comprehensive drug resistance surveys. The aim of this study was to determine the prevalence of HIV drug resistance mutations (DRMs) among treatment-naive PLHIV in a large antiretroviral treatment center of the national program. This cross-sectional study was done in 2017 and involved 200 consecutive treatment-naive PLHIV. A target fragment of 1,306 bp in the reverse transcriptase and protease regions was amplified. Identification of mutations and drug resistance interpretation was done by HIV Genotypic Resistance Interpretation and International Antiviral Society-USA list. Sequencing was successful in 177 samples. The majority (98.8%; 175/177) belonged to subtype C. Nineteen of 177 patients (10.7%; 95% CI: 6.2%-15.3%) had at least one major DRM. The prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations was 10.2% (18/177). The most frequent mutations were E138A/K, A98G, K103N, V179D, and K101H/E. The prevalence of nucleoside reverse transcriptase inhibitor (NRTI) mutations was 1.1% (2/177). None of the samples had major protease inhibitor resistance mutations. The prevalence of NNRTI mutations in this study was >10%, crossing the threshold recommended by the WHO to change the NNRTI-based first-line regimen to non-NNRTI based. In 2021, the national program replaced efavirenz with dolutegravir in the first-line regimen of tenofovir, lamivudine, and efavirenz. As the majority (64%) of PLHIV in India are accessing free ART from the national program, this study highlights the need for regular nationally representative drug resistance surveys for optimizing antiretroviral regimens in the program.


Subject(s)
Alkynes , Anti-HIV Agents , Cyclopropanes , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Prevalence , Tertiary Care Centers , Cross-Sectional Studies , HIV-1/genetics , Benzoxazines/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology , Anti-Retroviral Agents/therapeutic use , Mutation , Drug Resistance, Viral/genetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology
8.
Rev Invest Clin ; 76(1): 29-36, 2024.
Article in English | MEDLINE | ID: mdl-38442695

ABSTRACT

Background: Human immunodeficiency virus (HIV) drug resistance is a major cause of treatment failure in children and adolescents infected with the virus. Objectives: The objectives of the study are to investigate HIV drug resistance (HIVDR) in patients who attended a referral care center in Argentina over a 15-year period and to compare mutational patterns between HIV-1 polsequences characterized as B or BF recombinants. Methods: Individual resistance-associated mutations (RAMs) (to protease and reverse transcriptase inhibitors) were identified according to IAS-USA guidelines in 374 HIV-1-infected children and adolescents. HIV-1 subtype was characterized by phylogenetic and recombination analysis using MEGA5.1 and Simplot. Poisson linear regression was used to model the dynamics of the RAMs over time. Results: The prevalence of RAMs to protease inhibitors (R2 = 0.52, p = 0.0012) and nucleoside reverse transcriptase inhibitors (R2 = 0.30, p = 0.0225) decreased over time. HIVDR to non-nucleoside reverse transcriptase inhibitors remained moderate to high, ranging between 33% and 76%. BF recombinants showed a higher frequency of thymidine analog mutation 1 RAMs profile and I54V mutation. Conclusion: In Argentina, HIVDR observed in children and adolescents has decreased over the past 15 years, regardless of the viral subtype. (REV INVEST CLIN. 2024;76(1):29-36).


Subject(s)
HIV Infections , HIV-1 , Adolescent , Child , Humans , Argentina/epidemiology , HIV-1/genetics , Phylogeny , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV Infections/epidemiology
10.
Rev Med Virol ; 34(2): e2529, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520650

ABSTRACT

The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active
11.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396919

ABSTRACT

High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid ß40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.


Subject(s)
Alzheimer Disease , Anti-HIV Agents , HIV Infections , Female , Male , Mice , Animals , Cholesterol 24-Hydroxylase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Benzoxazines/chemistry , Alkynes/therapeutic use , Cyclopropanes/therapeutic use , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/pharmacology , Anti-HIV Agents/therapeutic use
12.
Viruses ; 16(2)2024 01 23.
Article in English | MEDLINE | ID: mdl-38399945

ABSTRACT

This review article will describe the (wide) variety of approaches that I envisaged to develop a specific therapy for viral infections: (i) interferon and its inducers, (ii) HSV, VZV and CMV inhibitors, (iii) NRTIs (nucleoside reverse transcriptase inhibitors), NtRTIs (nucleotide reverse transcriptase inhibitors) and NNRTIs (non-nucleoside reverse transcriptase inhibitors) as HIV inhibitors, (iv) NtRTIs as HBV inhibitors, and finally, (v) the transition of an HIV inhibitor to a stem cell mobilizer, as exemplified by AMD-3100 (Mozobil®).


Subject(s)
Anti-HIV Agents , HIV Infections , Virus Diseases , Humans , Reverse Transcriptase Inhibitors/pharmacology , Anti-HIV Agents/therapeutic use , Virus Diseases/drug therapy , HIV Infections/drug therapy , Drug Development , HIV Reverse Transcriptase
13.
BMJ Open ; 14(2): e080606, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341206

ABSTRACT

PURPOSE: The PRESTIGIO Registry was established in 2017 to collect clinical, virological and immunological monitoring data from people living with HIV (PLWH) with documented four-class drug resistance (4DR). Key research purposes include the evaluation of residual susceptibility to specific antiretrovirals and the validation of treatment and monitoring strategies in this population. PARTICIPANTS: The PRESTIGIO Registry collects annual plasma and peripheral blood mononuclear cell samples and demographic, clinical, virological, treatment and laboratory data from PLWH followed at 39 Italian clinical centres and characterised by intermediate-to-high genotypic resistance to ≥1 nucleoside reverse transcriptase inhibitors, ≥1 non-nucleoside reverse transcriptase inhibitors, ≥1 protease inhibitors, plus either intermediate-to-high genotypic resistance to ≥1 integrase strand transfer inhibitors (INSTIs) or history of virological failure to an INSTI-containing regimen. To date, 229 people have been recorded in the cohort. Most of the data are collected from the date of the first evidence of 4DR (baseline), with some prebaseline information obtained retrospectively. Samples are collected from the date of enrollment in the registry. FINDINGS TO DATE: The open-ended cohort has been used to assess (1) prognosis in terms of survival or development of AIDS-related or non-AIDS-related clinical events; (2) long-term efficacy and safety of different antiretroviral regimens and (3) virological and immunological factors predictive of clinical outcome and treatment efficacy, especially through analysis of plasma and cell samples. FUTURE PLANS: The registry can provide new knowledge on how to implement an integrated approach to study PLWH with documented resistance to the four main antiretroviral classes, a population with a limited number of individuals characterised by a high degree of frailty and complexity in therapeutic management. Given the scheduled annual updates of PLWH data, the researchers who collaborate in the registry can send study proposals at any time to the steering committee of the registry, which evaluates every 3 months whether the research studies can be conducted on data and biosamples from the registry and whether they are aimed at a better understanding of a specific health condition, the emergence of comorbidities or the effect of potential treatments or experimental drugs that may have an impact on disease progression and quality of life. Finally, the research studies should aim to be inclusive, innovative and in touch with the communities and society as a whole. TRIAL REGISTRATION NUMBER: NCT04098315.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , HIV-1/genetics , Integrase Inhibitors/pharmacology , Integrase Inhibitors/therapeutic use , Peptide Hydrolases/pharmacology , Peptide Hydrolases/therapeutic use , Leukocytes, Mononuclear , Quality of Life , Retrospective Studies , HIV Infections/drug therapy , Anti-HIV Agents/therapeutic use , Registries , Italy , RNA-Directed DNA Polymerase/pharmacology , RNA-Directed DNA Polymerase/therapeutic use
14.
Drug Dev Res ; 85(1): e22154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349259

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significantly impacted the HIV-1 wild-type due to their high specificity and superior potency. As well as different combinations of NNRTIs have been used on clinically approved combining highly active antiretroviral therapy (HAART) to resist the growth of HIV-1 and decrease the mortality rate of HIV/AIDS. Although the feeble strength against the drug-resistant mutant strains and the long-term damaging effects have been reducing the effectiveness of HAART, it could be a crucial challenge to develop novel Anti-HIV leads with a vital mode of action and the least side effects. The extensive chemical reactivity and the diverse chemotherapeutic applications of the 1,3,5-triazine have provided a wide scope of research in medicinal chemistry via a structural modification. In this review, we focused on the Anti-HIV profile of the tri-substituted s-triazine derivatives with structure-based features and also discussed the active mode of action to evaluate the significant findings. The tri-substituted 1,3,5-triazine derivatives have been found more promising to inhibit the growth of the drug-sensitive and drug-resistant variants of HIV-1, especially HIV-1 wild-type, HIV-1 K103N/Y181C, and HIV-1 Tyr181Cys. It has been observed that these derivatives have interacted with the enzyme protein residues via a significant π $\pi $ - π $\pi $ interaction and hydrogen bonding to resist the proliferation of the viral genomes. Further, the SAR and the active binding modes are critically described and highlight the role of structural variations with functional groups along with the binding affinity of targeted enzymes, which may be beneficial for rational drug discovery to develop highly dynamic Anti-HIV agents.


Subject(s)
HIV-1 , Triazines , Triazines/pharmacology , Triazines/therapeutic use , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Chemistry, Pharmaceutical , Drug Discovery
15.
Int J Immunopathol Pharmacol ; 38: 3946320241231465, 2024.
Article in English | MEDLINE | ID: mdl-38296818

ABSTRACT

OBJECTIVES: Antiretroviral therapy (ART) efficacy is jeopardized by the emergence of drug resistance mutations in HIV, compromising treatment effectiveness. This study aims to propose novel analogs of Effavirenz (EFV) as potential direct inhibitors of HIV reverse transcriptase, employing computer-aided drug design methodologies. METHODS: Three key approaches were applied: a mutational profile study, molecular dynamics simulations, and pharmacophore development. The impact of mutations on the stability, flexibility, function, and affinity of target proteins, especially those associated with NRTI, was assessed. Molecular dynamics analysis identified G190E as a mutation significantly altering protein properties, potentially leading to therapeutic failure. Comparative analysis revealed that among six first-line antiretroviral drugs, EFV exhibited notably low affinity with viral reverse transcriptase, further reduced by the G190E mutation. Subsequently, a search for EFV-similar inhibitors yielded 12 promising molecules based on their affinity, forming the basis for generating a pharmacophore model. RESULTS: Mutational analysis pinpointed G190E as a crucial mutation impacting protein properties, potentially undermining therapeutic efficacy. EFV demonstrated diminished affinity with viral reverse transcriptase, exacerbated by the G190E mutation. The search for EFV analogs identified 12 high-affinity molecules, culminating in a pharmacophore model elucidating key structural features crucial for potent inhibition. CONCLUSION: This study underscores the significance of EFV analogs as potential inhibitors of HIV reverse transcriptase. The findings highlight the impact of mutations on drug efficacy, particularly the detrimental effect of G190E. The generated pharmacophore model serves as a pivotal reference for future drug development efforts targeting HIV, providing essential structural insights for the design of potent inhibitors based on EFV analogs identified in vitro.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/chemistry , Molecular Dynamics Simulation , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/therapeutic use , Pharmacophore , Molecular Docking Simulation , HIV Infections/drug therapy , HIV Infections/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
16.
Proc Natl Acad Sci U S A ; 121(4): e2319162121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227662

ABSTRACT

The presence of bacteria in the bloodstream is associated with severe clinical outcomes. In mice, intravenous inoculation of Escherichia coli can lead to the formation of macroscopic abscesses in the liver. Abscesses are regions of severe necrosis and consist of millions of bacteria surrounded by inflammatory immune cells. Liver abscess susceptibility varies widely across strains of mice, but the host factors governing this variation are unknown. Here, we profiled hepatic transcriptomes in mice with varying susceptibility to liver abscess formation. We found that transcripts from endogenous retroviruses (ERVs) are robustly induced in the liver by E. coli infection and ERV expression positively correlates with the frequency of abscess formation. Hypothesizing that ERV-encoded reverse transcriptase may generate cytoplasmic DNA and heighten inflammatory responses, we tested whether nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) influence abscess formation. Strikingly, a single NRTI dose administered immediately following E. coli inoculation prevented abscess formation, leading to a concomitant 100,000-fold reduction in bacterial burden. We provide evidence that NRTIs inhibit abscess formation by preventing the tissue necrosis that facilitates bacterial replication. Together, our findings suggest that endogenous reverse transcriptases drive inflammatory responses during bacterial bloodstream infection to drive abscess formation. The high efficacy of NRTIs in preventing abscess formation suggests that the consequences of reverse transcription on inflammation should be further examined, particularly in infectious diseases where inflammation drives negative clinical outcomes, such as sepsis.


Subject(s)
Bacterial Infections , Endogenous Retroviruses , Escherichia coli Infections , Liver Abscess , Sepsis , Animals , Mice , Reverse Transcriptase Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli Infections/genetics , Liver Abscess/drug therapy , Liver Abscess/genetics , Bacterial Infections/drug therapy , Nucleotides , Sepsis/drug therapy , Necrosis/genetics
17.
Virol J ; 21(1): 14, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200531

ABSTRACT

The human T-lymphotropic virus type 1 (HTLV-1) infects millions of people globally and is endemic to various resource-limited regions. Infections persist for life and are associated with increased susceptibility to opportunistic infections and severe diseases including adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy-tropical spastic paraparesis. No HTLV-1-specific anti-retrovirals have been developed and it is unclear whether existing anti-retrovirals developed for treatment of human immunodeficiency virus (HIV) have efficacy against HTLV-1. To understand the structural basis for therapeutic binding, homology modelling and machine learning were used to develop a structural model of the HTLV-1 reverse transcriptase. With this, molecular docking experiments using a panel of FDA-approved inhibitors of viral reverse transcriptases to assess their capacity for binding, and in turn, inhibition. Importantly, nucleoside/nucleotide reverse transcriptase inhibitor but not non-nucleoside reverse transcriptase inhibitors were predicted to bind the HTLV-1 reverse transcriptase, with similar affinity to HIV-1 reverse transcriptase. By strengthening the rationale for clinical testing of therapies such as tenofovir alafenamide, zidovudine, lamivudine, and azvudine for treatment of HTLV-1, this study has demonstrated the power of in silico structural biology approaches in drug design and therapeutic testing.


Subject(s)
Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic , Adult , Humans , Nucleotides , Reverse Transcriptase Inhibitors/pharmacology , Molecular Docking Simulation
18.
Curr HIV/AIDS Rep ; 21(2): 31-39, 2024 04.
Article in English | MEDLINE | ID: mdl-38244171

ABSTRACT

PURPOSE OF REVIEW: The prevalence of HIV-1 in Indonesia is on a concerning upward trajectory, with a concurrent rise in the development of drug-resistant strains, challenging the efficacy of antiretroviral therapy (ART). Many mutations have been found in the pol gene that makes HIV resistant to ART. We aim to review the major drug resistance mutations (DRMs) of reverse transcriptase (RT) of pol gene in HIV-1 cases in Indonesia. RECENT FINDINGS: A total of eleven articles reporting DRMs in HIV-1 subjects from various regions between 2015-2020 in Indonesia are included. The prevalence of major DRMs on the RT gene in studies included varies from 3.4% to 34%. The CRF01_AE subtype stands out as the predominant variant. Notably, the prevalence of major DRMs in ART-experienced individuals is 22.1%, while ART-naïve individuals show a lower rate of 4.4%. Among the RT gene mutations, M184I/V emerges as the most prevalent (10.5%) within the nucleos(t)ide reverse transcriptase inhibitors (NRTI) group, while K103N leads among the non-NRTI (NNRTI) group, with a frequency of 6.4%. Regionally, North Sulawesi records the highest prevalence of major DRMs in the RT gene at 21.1%, whereas Riau and Central Papua exhibit the lowest rates at 3.4%. Significant variations in drug resistance mutations within the RT gene across Indonesian regions highlight the importance of closely monitoring and evaluating the effectiveness of current antiretroviral therapy (ART) regimens. Considerably, more studies are needed to understand better and overcome the emergence of DRMs on HIV-1 patients in Indonesia.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Indonesia/epidemiology , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/therapeutic use , Drug Resistance, Viral/genetics , Genotype , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Mutation , HIV Seropositivity/drug therapy , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
19.
Chem Biol Drug Des ; 103(1): e14372, 2024 01.
Article in English | MEDLINE | ID: mdl-37817296

ABSTRACT

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a lethal disease that is prevalent worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) data, 38.4 million people worldwide were living with HIV in 2021. Viral reverse transcriptase (RT) is an excellent target for drug intervention. Nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of approved antiretroviral drugs. Later, a new type of non-nucleoside reverse transcriptase inhibitors (NNRTIs) were approved as anti-HIV drugs. Zidovudine, didanosine, and stavudine are FDA-approved NRTIs, while nevirapine, efavirenz, and delavirdine are FDA-approved NNRTIs. Several agents are in clinical trials, including apricitabine, racivir, elvucitabine, doravirine, dapivirine, and elsulfavirine. This review addresses HIV-1 structure, replication cycle, reverse transcription, and HIV drug targets. This study focuses on NRTIs and NNRTIs, their binding sites, mechanisms of action, FDA-approved drugs and drugs in clinical trials, their resistance and adverse effects, their molecular docking studies, and highly active antiretroviral therapy (HAART).


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Molecular Docking Simulation , HIV Infections/drug therapy , Acquired Immunodeficiency Syndrome/chemically induced , Acquired Immunodeficiency Syndrome/drug therapy , HIV Reverse Transcriptase/metabolism
20.
J Antimicrob Chemother ; 79(2): 370-374, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38153245

ABSTRACT

BACKGROUND: Islatravir is a new antiretroviral drug that inhibits the reverse transcriptase (RT) of HIV-1 through multiple mechanisms. It is proposed to be used in combination with doravirine, a new NNRTI. M184V/I mutations have been shown to reduce the in vitro antiviral activity of islatravir, but their effect when pre-selected during ART has not been investigated. METHODS: HIV-1 rt sequences were obtained from four individuals of the Garrahan HIV cohort prior to, or during virological failure to ART. HIV-1 infectious molecular clones were constructed on an NL4-3 backbone, and infectious viruses were produced by transfection of 293T cells. Fold-changes in IC50 were calculated for each mutant versus the NL4-3 WT. HIV-1 phenotypic drug resistance was tested in vitro against NRTIs and NNRTIs. RESULTS: In all the cases, M184I/V, either alone or in the presence of other mutations, was associated with reduced susceptibility to islatravir, abacavir and lamivudine. Viruses carrying M184V/I showed variable levels of resistance to islatravir (4.8 to 33.8-fold). The greatest reduction in susceptibility was observed for viruses carrying the mutations M184V + V106I (33.8-fold resistance) or M184V + I142V (25.2-fold resistance). For NNRTIs, the presence of V106I alone did not affect susceptibility to doravirine or etravirine, but showed a modest reduction in susceptibility to efavirenz (6-fold). Susceptibility to doravirine was slightly reduced only for one of the mutants carrying V106I in combination with Y181C and M184V. CONCLUSIONS: Mutations and polymorphisms selected in vivo together with M184V/I depend on the viral genetic context and on ART history, and could affect the efficacy of islatravir once available for use in the clinic.


Subject(s)
Anti-HIV Agents , Deoxyadenosines , HIV Infections , HIV-1 , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV-1/genetics , HIV Infections/drug therapy , Lamivudine/therapeutic use , Mutation , HIV Reverse Transcriptase/genetics , Drug Resistance, Viral/genetics , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...