Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.105
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830096

ABSTRACT

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Subject(s)
Cytidine , Hepatitis B virus , RNA, Viral , Reverse Transcription , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B virus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Cytidine/analogs & derivatives , Cytidine/metabolism , Cytidine/genetics , Humans , Reverse Transcription/genetics , Methylation , Virus Replication/genetics , Epigenesis, Genetic , Virion/metabolism , Virion/genetics , Transcriptome
2.
Sci Rep ; 14(1): 12438, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816439

ABSTRACT

Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is the most economically important viral disease of cassava. As cassava is a vegetatively propagated crop, the development of rapid and sensitive diagnostics would aid in the identification of virus-free planting material and development of effective management strategies. In this study, a rapid, specific and sensitive real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for real-time detection of CBSV and UCBSV. The RT-RPA was able to detect as little as 2 pg/µl of purified RNA obtained from infected cassava leaves, a sensitivity equivalent to that obtained by quantitative real-time reverse transcription PCR (qRT-PCR), within 20 min at 37 °C. Further, the RT-RPA detected each target virus directly from crude leaf and stem extracts, avoiding the tedious and costly isolation of high-quality RNA. The developed RT-RPA assay provides a valuable diagnostic tool that can be adopted by cassava seed certification and virus resistance breeding programs to ensure distribution of virus-free cassava planting materials to farmers. This is the first report on the development and validation of crude sap-based RT-RPA assay for the detection of cassava brown streak viruses (UCBSV and CBSV) infection in cassava plants.


Subject(s)
Manihot , Plant Diseases , Potyviridae , Recombinases , Manihot/virology , Plant Diseases/virology , Potyviridae/genetics , Potyviridae/isolation & purification , Recombinases/metabolism , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Plant Leaves/virology , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction/methods
3.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723628

ABSTRACT

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Subject(s)
Hepatitis B virus , Reverse Transcription , Humans , Genome, Viral/genetics , Hepatitis B virus/genetics , Mutation , Ribosomes/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cell Line
4.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755641

ABSTRACT

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
5.
Anal Chem ; 96(21): 8730-8739, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743814

ABSTRACT

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.


Subject(s)
Adenosine , Inosine , RNA Editing , Adenosine/analogs & derivatives , Adenosine/analysis , Adenosine/metabolism , Inosine/metabolism , Inosine/analogs & derivatives , Inosine/chemistry , Deamination , RNA/metabolism , RNA/genetics , RNA/analysis , Reverse Transcription , Humans
7.
Sci Adv ; 10(17): eadn7033, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657061

ABSTRACT

HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.


Subject(s)
DNA, Viral , HIV-1 , Reverse Transcription , Virus Uncoating , HIV-1/physiology , HIV-1/drug effects , HIV-1/genetics , Humans , DNA, Viral/genetics , DNA, Viral/metabolism , Virus Replication/drug effects , Genome, Viral , Microscopy, Atomic Force , Capsid/metabolism
8.
Biochem Biophys Res Commun ; 711: 149909, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38615573

ABSTRACT

RNA analysis has shown great value in forensic science, such as body fluids and tissue identification, postmortem interval estimation, biological age prediction, etc. Currently, most RNA follow-up experiments involve reverse transcription (RT) procedures. It has been shown that the RT step is variable and has a greater impact on subsequent data analysis, especially for forensic trace samples. However, the pattern of variation between different RNA template inputs and complementary DNA (cDNA) yield is unclear. In this study, a series of 2-fold gradient dilutions of RNA standards (1 µg/µL - 0.24 ng/µL) and forensic samples (including blood samples, saliva samples, bloodstains, and saliva stains) were reverse-transcribed using EasyQuick RT MasterMix. The obtained cDNA was quantified by droplet digital PCR (ddPCR) to assess the RT yield of the ACTB gene. The results showed that the 125 ng RNA template had the highest RT yield in a 10 µL RT reaction system with the selected kit. For all stain samples, the RT yield improved as the amount of RNA template input increased since RNA quantities were below 125 ng. As many commercialized reverse transcription kits using different kinds of enzymes are available for forensic RNA research, we recommend that systematic experiments should be performed in advance to determine the amount of RNA input at the optimum RT yield when using any kit for reverse transcription experiments.


Subject(s)
RNA , Humans , RNA/genetics , RNA/analysis , Reverse Transcription , Saliva/metabolism , Saliva/chemistry , Forensic Genetics/methods , Forensic Genetics/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Reference Standards , DNA, Complementary/genetics , Blood Stains , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards
9.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648766

ABSTRACT

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Subject(s)
Catalytic Domain , HIV Integrase , HIV-1 , Reverse Transcription , Virus Integration , HIV Integrase/metabolism , HIV Integrase/chemistry , HIV Integrase/genetics , HIV-1/enzymology , Humans
10.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594417

ABSTRACT

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Subject(s)
Avian Leukosis Virus , Molecular Diagnostic Techniques , Reverse Transcription , Animals , Avian Leukosis Virus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
11.
J Clin Microbiol ; 62(5): e0024324, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38629844

ABSTRACT

Detection of bacterial RNA by nucleic acid amplification tests (NAATs), such as reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP), offers distinct advantages over DNA-based methods. However, such assays also present challenges in ascertaining positive and internal control material that can reliably monitor success over all phases of testing (bacterial lysis, nucleic acid recovery, reverse transcription, amplification, and signal detection): since they are unable to distinguish between amplification of bacterial RNA transcripts and the DNA templates that encode them, using intact organisms as controls can inform cell lysis but not successful detection of RNA. We developed a control strategy for RNA-based bacterial NAATs that allows ready discrimination of RNA from DNA templates using self-splicing bacterial introns, such that those nucleic acids ultimately encode different sequences. We engineered two vectors encoding synthetic transgenes based on this principle, one that is active in the Gram-negative bacterium Escherichia coli and one that functions in both E. coli and the Gram-positive organism Staphylococcus aureus. We subsequently designed RT-LAMP assays that either target RNA and DNA from transgenic organisms or target RNA exclusively and demonstrated the specificity of amplification using purified nucleic acids. Using multiplex fluorescent RT-LAMP of heat-lysed specimens, we showed the practicality of deploying such transgenic organisms as an internal control to ascertain sample integrity and assay performance during clinical diagnostic testing. Our approach has broad utility for RNA-based bacterial NAATs, especially point-of-care assays and other applications where nucleic acids are nonspecifically liberated for testing.


Subject(s)
Escherichia coli , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Bacterial , Reverse Transcription , Staphylococcus aureus , Nucleic Acid Amplification Techniques/methods , Escherichia coli/genetics , RNA, Bacterial/genetics , Staphylococcus aureus/genetics , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Humans , Sensitivity and Specificity , Reference Standards
12.
J Virol Methods ; 326: 114909, 2024 May.
Article in English | MEDLINE | ID: mdl-38452822

ABSTRACT

This study aimed to evaluate diagnostic accuracy of SARS-CoV-2 RNA detection in saliva samples treated with a guanidine-based or guanidine-free inactivator, using nasopharyngeal swab samples (NPS) as referents. Based on the NPS reverse transcription-polymerase chain reaction (RT-PCR) results, participants were classified as with or without COVID-19. Fifty sets of samples comprising NPS, self-collected raw saliva, and saliva with a guanidine-based, and guanidine-free inactivator were collected from each group. In patients with COVID-19, the sensitivity of direct RT-PCR using raw saliva and saliva treated with a guanidine-based and guanidine-free inactivator was 100.0%, 65.9%, and 82.9%, respectively, with corresponding concordance rates of 94.3% (κ=88.5), 82.8% (κ=64.8), and 92.0% (κ=83.7). Among patients with a PCR Ct value of <30 in the NPS sample, the positive predictive value for the three samples was 100.0%, 80.0%, and 96.0%, respectively. The sensitivity of SARS-CoV-2 RNA detection was lower in inactivated saliva than in raw saliva and lower in samples treated with a guanidine-based than with a guanidine-free inactivator. However, in individuals contributing to infection spread, inactivated saliva showed adequate accuracy regardless of the inactivator used. Inactivators can be added to saliva samples collected for RT-PCR to reduce viral transmission risk while maintaining adequate diagnostic accuracy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Guanidine , SARS-CoV-2/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Saliva , COVID-19/diagnosis , Guanidines , Nasopharynx , Specimen Handling , COVID-19 Testing
13.
mBio ; 15(5): e0034824, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38530034

ABSTRACT

A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization per se does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA. IMPORTANCE: In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.


Subject(s)
Capsid Proteins , Capsid , HIV-1 , Immunity, Innate , Membrane Proteins , Nucleotidyltransferases , Reverse Transcription , HIV-1/genetics , HIV-1/immunology , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/immunology , Capsid/metabolism , Capsid/immunology , Signal Transduction , HEK293 Cells , HIV Infections/virology , HIV Infections/immunology , HIV Infections/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
14.
J Extracell Vesicles ; 13(4): e12421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545822

ABSTRACT

Extracellular vesicles (EVs) contain a plethora of biomolecules, including nucleic acids, with diverse diagnostic and therapeutic application potential. Although reverse transcription-quantitative PCR (RT-qPCR) is the most widely applied laboratory technique to evaluate gene expression, its applicability in EV research is challenged by the lack of universal and stably present reference genes (RGs). In this study, we identify, validate and establish SNRPG, OST4, TOMM7 and NOP10 as RGs for the normalization of EV-associated genes by RT-qPCR. We show the stable presence of SNRPG, OST4, TOMM7 and NOP10 in multiple cell lines and their secreted EVs (n = 12) under different (patho)physiological conditions as well as in human-derived biofluids (n = 3). Enzymatic treatments confirm the presence of SNRPG, OST4, TOMM7 and NOP10 inside EVs. In addition, the four EV-associated RGs are stably detected in a size-range of EV subpopulations. RefFinder analysis reveals that SNRPG, OST4, TOMM7 and NOP10 are more stable compared to RGs established specifically for cultured cells or tissues such as HMBS, YWHAZ, SDHA and GAPDH. In summary, we present four universal and stably present EV-associated RGs to enable normalization and thus steer the implementation of RT-qPCR for the analysis of EV-associated RNA cargo for research or clinical applications.


Subject(s)
Extracellular Vesicles , Reverse Transcription , Humans , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , RNA/metabolism , Cell Line , Cells, Cultured , snRNP Core Proteins/metabolism
15.
Trends Cancer ; 10(4): 286-288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499453

ABSTRACT

Subsets of long interspersed nuclear element 1 (LINE-1) retrotransposons can 'retrotranspose' throughout the human genome at a cost to host cell fitness, as observed in some cancers. Pharmacological inhibition of LINE-1 retrotransposition requires a comprehensive understanding of the LINE-1 ORF2p reverse transcriptase. Two recent publications, by Thawani et al. and Baldwin et al., report structures of LINE-1 ORF2p and address long-standing mechanistic gaps regarding LINE-1 retrotransposition. Both studies will be critical to design new specific inhibitors of the LINE-1 ORF2p reverse transcriptase.


Subject(s)
Long Interspersed Nucleotide Elements , Reverse Transcription , Humans , HeLa Cells , Long Interspersed Nucleotide Elements/genetics , Retroelements , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
16.
Microbiol Spectr ; 12(4): e0387223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38442427

ABSTRACT

In vitro reverse transcription of full-length HIV-1 RNA extracted from the blood plasma of people living with HIV-1 remains challenging. Here, we describe the initiation of reverse transcription of plasma-derived viral RNA in the absence of an exogenous primer. Real-time PCR and Sanger sequencing were applied to identify the source and to monitor the outcome of this reaction. Results demonstrated that during purification of viral RNA from plasma, tRNA(Lys-3) is co-extracted in a complex with the viral RNA. In the presence of a reverse transcription enzyme, this tRNA(Lys-3) can induce reverse transcription, a reaction that is not confined to transcription of the 5' end of the viral RNA. A range of cDNA products is generated, most of them indicative for the occurrence of in vitro strand transfer events that involve translocation of cDNA from the 5' end to random positions on the viral RNA. This process results in the formation of cDNAs with large internal deletions. However, near full-length cDNA and cDNA with sequence patterns resembling multiple spliced HIV-1 RNA were also detected. Despite its potential to introduce significant bias in the interpretation of results across various applications, tRNA(Lys-3)-driven reverse transcription has been overlooked thus far. A more in-depth study of this tRNA-driven in vitro reaction may provide new insight into the complex process of in vivo HIV-1 replication.IMPORTANCEThe use of silica-based extraction methods for purifying HIV-1 RNA from viral particles is a common practice, but it involves co-extraction of human tRNA(Lys-3) due to the strong interactions between these molecules. This co-extraction becomes particularly significant when the extracted RNA is used in reverse transcription reactions, as the tRNA(Lys-3) then serves as a primer. Reverse transcription from tRNA(Lys-3) is not confined to cDNA synthesis of the 5' end of the viral RNA but extends across various regions of the viral genome through in vitro strand transfer events. Co-extraction of tRNA(Lys-3) has been overlooked thus far, despite its potential to introduce bias in downstream, reverse transcription-related applications. The observed events in the tRNA(Lys-3)-induced in vitro reverse transcription resemble in vivo replication processes. Therefore, these reactions may offer a unique model to better understand the replication dynamics of HIV-1.


Subject(s)
HIV-1 , Reverse Transcription , Humans , HIV-1/genetics , Artifacts , DNA, Complementary/genetics , Transcription, Genetic , Base Sequence , RNA, Viral/genetics , RNA, Transfer/genetics , Nucleic Acid Conformation
17.
Clin Microbiol Infect ; 30(6): 810-815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460820

ABSTRACT

OBJECTIVES: We aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform for the rapid detection of chikungunya virus (CHIKV) in both patient and mosquito samples from Brazil. METHODS: We optimized an RT-LAMP assay and then evaluated the specificity and sensitivity using visual detection. In comparison with the RT-qPCR reference method, we validated the utility of this assay as a molecular diagnostic test in a reference laboratory for arbovirus diagnostics using 100 serum samples collected from suspected CHIKV cases. RESULTS: Our RT-LAMP assay specifically detected CHIKV without cross-reactivity against other arboviruses. The limit of detection of our RT-LAMP was estimated in -1.18 PFU (confidence interval [CI] ranging from -2.08 to 0.45), resulting in a similar analytical sensitivity when directly compared with the reference standard RT-qPCR assay. Then, we demonstrate the ability of our RT-LAMP assay to detect the virus in different human specimens (serum, urine, and saliva), and crude lysate of Aedes aegypti mosquitoes in as little as 20-30 minutes and without a separate RNA isolation step. Lastly, we showed that our RT-LAMP assay could be lyophilized and reactivated by adding water, indicating potential for room-temperature storage. Our RT-LAMP had a clinical sensitivity of 100% (95% CI, 90.97-100.00%), clinical specificity of 96.72% (95% CI, 88.65-99.60%), and overall accuracy of 98.00% (95% CI, 92.96-99.76%). DISCUSSION: Taken together, these findings indicate that the RT-LAMP assay reported here solves important practical drawbacks to the deployment of molecular diagnostics in the field and can be used to improve testing capacity, particularly in low- and middle-income countries.


Subject(s)
Chikungunya Fever , Chikungunya virus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Humans , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Aedes/virology , Brazil , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcription
18.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474020

ABSTRACT

Versatility, sensitivity, and accuracy have made the real-time polymerase chain reaction (qPCR) a crucial tool for research, as well as diagnostic applications. However, for point-of-care (PoC) use, traditional qPCR faces two main challenges: long run times mean results are not available for half an hour or more, and the requisite high-temperature denaturation requires more robust and power-demanding instrumentation. This study addresses both issues and revises primer and probe designs, modified buffers, and low ∆T protocols which, together, speed up qPCR on conventional qPCR instruments and will allow for the development of robust, point-of-care devices. Our approach, called "FlashPCR", uses a protocol involving a 15-second denaturation at 79 °C, followed by repeated cycling for 1 s at 79 °C and 71 °C, together with high Tm primers and specific but simple buffers. It also allows for efficient reverse transcription as part of a one-step RT-qPCR protocol, making it universally applicable for both rapid research and diagnostic applications.


Subject(s)
Reverse Transcription , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
19.
J Virol Methods ; 326: 114892, 2024 May.
Article in English | MEDLINE | ID: mdl-38331220

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) is an economically important virus causing significant mortalities among wild and cultured salmonid fish worldwide. Rapid and sensitive diagnostic methods of IHNV are crucial for timely controlling infections. For better detection of IHNV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of IHNV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 41 °C and 35 min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15 min. The whole detection procedure including can be accomplished within one hour, with a detection sensitivity of about 9.5 copies/µL. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses HIRRV and VHSV, allowing naked-eye interpretation of the results through lateral flow or fluorescence under ultraviolet light. Overall, our results demonstrated that the developed RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for routine and on-site detection of IHNV, which shows a great application promise for the prevention of IHNV infections.


Subject(s)
Infectious hematopoietic necrosis virus , Animals , Infectious hematopoietic necrosis virus/genetics , CRISPR-Cas Systems , Reverse Transcription , Recombinases/genetics
20.
Sci Rep ; 14(1): 3830, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360762

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacterium considered an emerging multi-drug-resistant pathogen. Furthermore, this bacterium can survive in extreme environmental conditions, which makes it a frequent cause of nosocomial infection outbreaks. Gene expression analyses by Reverse Transcription Quantitative real-time PCR (RT-qPCR) depend on a reference gene, also called an endogenous gene, which is used to normalize the generated data and thus ensure an accurate analysis with minimal errors. Currently, gene expression analyses in A. baumannii are compromised, as there are no reports in the literature describing the identification of validated reference genes for use in RT-qPCR analyses. For this reason, we selected twelve candidate reference genes of A. baumannii and assessed their expression profile under different experimental and culture conditions. The expression stability of the candidate genes was evaluated by using statistical algorithms such as BestKeeper, geNorm, NormFinder, Delta CT, and RefFinder, in order to identify the most suitable candidate reference genes for RT-qPCR analyses. The statistical analyses indicated rpoB, rpoD, and fabD genes as the most adequate to ensure accurate normalization of RT-qPCR data in A. baumannii. The accuracy of the proposed reference genes was validated by using them to normalize the expression of the ompA gene, encoding the outer membrane protein A, in A. baumannii sensible and resistant to the antibiotic polymyxin. The present work provides suitable reference genes for precise RT-qPCR data normalization on future gene expression studies with A. baumannii.


Subject(s)
Acinetobacter baumannii , Reverse Transcription , Acinetobacter baumannii/genetics , Real-Time Polymerase Chain Reaction , Gene Expression Profiling , Algorithms , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...