Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.817
Filter
1.
Immunohematology ; 40(1): 15-27, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38739027

ABSTRACT

In pregnancy, D- pregnant women may be at risk of becoming immunized against D when carrying a D+ fetus, which may eventually lead to hemolytic disease of the fetus and newborn. Administrating antenatal and postnatal anti-D immunoglobulin prophylaxis decreases the risk of immunization substantially. Noninvasive fetal RHD genotyping, based on testing cell-free DNA extracted from maternal plasma, offers a reliable tool to predict the fetal RhD phenotype during pregnancy. Used as a screening program, antenatal RHD screening can guide the administration of antenatal prophylaxis in non-immunized D- pregnant women so that unnecessary prophylaxis is avoided in those women who carry a D- fetus. In Europe, antenatal RHD screening programs have been running since 2009, demonstrating high test accuracies and program feasibility. In this review, an overview is provided of current state-of-the-art antenatal RHD screening, which includes discussions on the rationale for its implementation, methodology, detection strategies, and test performance. The performance of antenatal RHD screening in a routine setting is characterized by high accuracy, with a high diagnostic sensitivity of ≥99.9 percent. The result of using antenatal RHD screening is that 97-99 percent of the women who carry a D- fetus avoid unnecessary prophylaxis. As such, this activity contributes to avoiding unnecessary treatment and saves valuable anti-D immunoglobulin, which has a shortage worldwide. The main challenges for a reliable noninvasive fetal RHD genotyping assay are low cell-free DNA levels, the genetics of the Rh blood group system, and choosing an appropriate detection strategy for an admixed population. In many parts of the world, however, the main challenge is to improve the basic care for D- pregnant women.


Subject(s)
Rh-Hr Blood-Group System , Rho(D) Immune Globulin , Humans , Pregnancy , Female , Rh-Hr Blood-Group System/immunology , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/blood , Rho(D) Immune Globulin/therapeutic use , Rho(D) Immune Globulin/blood , Prenatal Diagnosis/methods , Isoantibodies/blood , Isoantibodies/immunology , Erythroblastosis, Fetal/prevention & control , Erythroblastosis, Fetal/diagnosis , Erythroblastosis, Fetal/blood , Erythroblastosis, Fetal/immunology
2.
BMC Genomics ; 25(1): 525, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807041

ABSTRACT

BACKGROUND: The Rh blood group system is characterized by its complexity and polymorphism, encompassing 56 different antigens. Accurately predicting the presence of the C antigen using genotyping methods has been challenging. The objective of this study was to evaluate the accuracy of various genotyping methods for predicting the Rh C and to identify a suitable method for the Chinese Han population. METHODS: In total, 317 donors, consisting 223 D+ (including 20 with the Del phenotype) and 94 D- were randomly selected. For RHC genotyping, 48C and 109bp insertion were detected on the Real-time PCR platform and -292 substitution was analyzed via restriction fragment length polymorphism (RFLP). Moreover, the promoter region of the RHCE gene was sequenced to search for other nucleotide substitutions between RHC and RHc. Agreement between prediction methods was evaluated using the Kappa statistic, and comparisons between methods were conducted via the χ2 test. RESULTS: The analysis revealed that the 48C allele, 109bp insertion, a specific pattern observed in RFLP results, and wild-type alleles of seven single nucleotide polymorphisms (SNPs) were in strong agreement with the Rh C, with Kappa coefficients exceeding 0.8. However, there were instances of false positives or false negatives (0.6% false negative rate for 109bp insertion and 5.4-8.2% false positive rates for other methods). The 109bp insertion method exhibited the highest accuracy in predicting the Rh C, at 99.4%, compared to other methods (P values≤0.001). Although no statistical differences were found among other methods for predicting Rh C (P values>0.05), the accuracies in descending order were 48C (94.6%) > rs586178 (92.7%) > rs4649082, rs2375313, rs2281179, rs2072933, rs2072932, and RFLP (92.4%) > rs2072931 (91.8%). CONCLUSIONS: None of the methods examined can independently and accurately predict the Rh C. However, the 109bp insertion test demonstrated the highest accuracy for predicting the Rh C in the Chinese Han population. Utilizing the 109bp insertion test in combination with other methods may enhance the accuracy of Rh C prediction.


Subject(s)
Asian People , Genotyping Techniques , Polymorphism, Single Nucleotide , Rh-Hr Blood-Group System , Humans , Rh-Hr Blood-Group System/genetics , Asian People/genetics , Genotyping Techniques/methods , China , Genotype , Alleles , Polymorphism, Restriction Fragment Length , Gene Frequency , Promoter Regions, Genetic , East Asian People
3.
J Coll Physicians Surg Pak ; 34(4): 419-423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576283

ABSTRACT

OBJECTIVE: To determine the genotypic frequency of Rh Cw antigen in blood donors of Northern Pakistan. STUDY DESIGN: Descriptive cross-sectional study. Place and Duration of the Study: Department of Molecular Haematology, Armed Forces Institute of Transfusion (AFIT), Rawalpindi, Pakistan, from August 2022 to January 2023. METHODOLOGY: Blood donors were randomly selected. Venous blood samples were taken in K3-EDTA anticoagulant tubes. ABO and Rh D grouping were performed conventionally. DNA for Rh Cw genotyping was extracted via Chelex TM, followed by PCR amplification using an ABI 2700 thermal cycler. Human growth hormone (HGH) acts as an internal control. Amplified products underwent Polyacrylamide gel Electrophoresis (PAGE). RESULTS: There were 400 randomly chosen donors whose ages ranged from 26-35 years, with a predominantly male population (94.8%) of Punjabi origin (67.8%). The majority (87.3%) was RhD positive. Blood group B was the most prevalent (35%) in the studied population, followed by O (34.75%). Only 1.5% had Rh Cw antigen. Rh Cw was more prevalent in ABO-positive participants (87.25%) compared to ABO-negative (12.75%). CONCLUSION: There was a 1.5% prevalence of Rh Cw antigen genotype in randomly selected Northern Pakistani blood donors. Rh Cw prevalence was higher in ABO-positive participants. Significant correlation (<0.05) existed between RhD and Cw antigens. Given the implications of anti-Cw antibody, including Cw antigen-positive cells in antibody screening is recommended. KEY WORDS: Alloimmunisation, Blood donors, HDFN, Phenotype, Rh antigens, Transfusion.


Subject(s)
Blood Group Antigens , Rh-Hr Blood-Group System , Humans , Male , Adult , Female , Pakistan , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/analysis , Blood Donors , Cross-Sectional Studies , Blood Group Antigens/genetics , Genotype
5.
Transfusion ; 64(5): 789-792, 2024 May.
Article in English | MEDLINE | ID: mdl-38562113

ABSTRACT

BACKGROUND: We recently encountered a Rhnull phenotype proband within one family in the Chinese population. Rhnull is a rare autosomal recessive disorder characterized by the absence of the Rh antigens on the erythrocyte membrane, resulting in chronic hemolytic anemia. This study described the serological and molecular analysis of a Chinese Rhnull proband and his immediate family. METHODS: Red blood cells antigen phenotyping and antibody screening/identification were conducted. RHD, RHCE, and RHAG were analyzed using genomic DNA by polymerase chain reaction and sequence analysis. RESULTS: Serologic tests showed a D-C-E-c-e- phenotype in the proband associated with the suspicion of anti-Rh29 (titer 16). Molecular analyses showed a new mutation (c.406dupA) in exon 3 of RHAG. This duplication introduced a reading frameshift (p.Thr136AsnfsTer21). The RHAG mutation was found in the homozygous state for the proband and heterozygous state for his parents. CONCLUSION: We identified a novel RHAG mutation resulting in the Rhnull phenotype of the regulator type. Inheritance of the novel allele was shown by family study.


Subject(s)
Frameshift Mutation , Phenotype , Rh-Hr Blood-Group System , Female , Humans , Male , Blood Proteins , East Asian People , Membrane Glycoproteins/genetics , Pedigree , Rh-Hr Blood-Group System/genetics
7.
Transfusion ; 64(5): 920-928, 2024 May.
Article in English | MEDLINE | ID: mdl-38634174

ABSTRACT

BACKGROUND: For patients with weak or discrepant RhD RBC phenotypes, RHD genotyping is employed to determine need for RhD-negative management. However, many RHD variants are type D-negative or D-positive. Serological recognition rates (RRs) of weak and partial RHD variants are poorly characterized. STUDY DESIGN AND METHODS: Four US studies employing RHD genotyping for weak or discrepant RhD phenotypes provided data for race/ethnicity-specific serological recognition. Three studies used microplate, and 1 used gel and tube; 2 had anti-D data. We obtained White and Hispanic/Latino allele frequencies (AFs) of weak D types 1, 2, and 3 single-nucleotide variants (SNVs) from the Genome Aggregation Database (gnomAD, v4.0.0) and devised Hardy-Weinberg-based formulas to correct for gnomAD's overcount of hemizygous RHD SNVs as homozygous. We compiled common partial RHD AF from genotyped cohorts of US Black or sickle cell disease subjects. From variant AF, we calculated hemizygous-plus-homozygous genetic prevalences. Serological prevalence: genetic prevalence ratios yielded serological RRs. RESULTS: Overall RRs of weak D types 1-3 were 17% (95% confidence interval 12%-24%) in Whites and 12% (5%-27%) in Hispanics/Latinos. For eight partial RHD variants in Blacks, overall RR was 11% (8%-14%). However, DAR RR was 80% (38%-156%). Compared to microplate, gel-tube recognition was higher for type 2 and DAU5 and lower for type 4.0. Anti-D was present in 6% of recognized partial RHD cases, but only in 0.7% of estimated total genetic cases. DISCUSSION: Based on AF, >80% of patients with weak or partial RHD variants were unrecognized serologically. Although overall anti-D rates were low, better detection of partial RHD variants is desirable.


Subject(s)
Gene Frequency , Rh-Hr Blood-Group System , Female , Humans , Male , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/blood , Genotype , Hispanic or Latino/genetics , Phenotype , Polymorphism, Single Nucleotide , Rh-Hr Blood-Group System/genetics , White/genetics , Black or African American/genetics
9.
Transfusion ; 64(6): 1171-1176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38686705

ABSTRACT

BACKGROUND: We report an obstetric case involving an RhD-positive woman who had developed a red blood cell (RBC) antibody that was not detected until after delivery of a newborn, who presented with a positive direct antiglobulin test result. Immunohematology studies suggested that the maternal antibody was directed against a low-prevalence antigen on the paternal and newborn RBCs. RESULTS: Comprehensive blood group profiling by targeted exome sequencing revealed a novel nonsynonymous single nucleotide variant (SNV) RHCE c.486C>G (GenBank MZ326705) on the RHCE*Ce allele, for both the father and newborn. A subsequent genomic-based study to profile blood groups in an Indigenous Australian population revealed the same SNV in 2 of 247 individuals. Serology testing showed that the maternal antibody reacted specifically with RBCs from these two individuals. DISCUSSION: The maternal antibody was directed against a novel antigen in the Rh blood group system arising from an RHCE c.486C>G variant on the RHCE*Ce allele linked to RHD*01. The variant predicts a p.Asn162Lys change on the RhCE protein and has been registered as the 56th antigen in the Rh system, ISBT RH 004063. CONCLUSION: This antibody was of clinical significance, resulting in a mild to moderate hemolytic disease of the fetus and newborn (HDFN). In the past, the cause of such HDFN cases may have remained unresolved. Genomic sequencing combined with population studies now assists in resolving such cases. Further population studies have potential to inform the need to design population-specific red cell antibody typing panels for antibody screening in the Australian population.


Subject(s)
Erythroblastosis, Fetal , Rh-Hr Blood-Group System , Humans , Rh-Hr Blood-Group System/genetics , Rh-Hr Blood-Group System/immunology , Female , Infant, Newborn , Erythroblastosis, Fetal/genetics , Erythroblastosis, Fetal/immunology , Pregnancy , Male , Adult , Isoantibodies/blood , Isoantibodies/immunology , Alleles , Erythrocytes/immunology , Polymorphism, Single Nucleotide
10.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 352-356, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595257

ABSTRACT

The Rh blood grouping system is a critical standardized test in transfusion medicine, especially for the cases related to haemolytic transfusion reactions and neonatal haemolytic disease caused by clinical RhD blood group incompatibility. In the present case report, we presented two cases with the uncommon RHD gene variation RHD*DEL37. The blood samples of the two subjects were mistakenly identified as RhD-negative through conventional serological testing. Firstly, both blood samples were tested negative for the RhD antigen using traditional tube test and gel microcolumn methods. The phenotyping of RhCE were identified as ccEe and ccee for each sample, respectively. Secondly, genetic analysis was performed using polymerase chain reaction-sequence specific prime (PCR-SSP) which revealed that neither sample belonging to the several common RHD gene variants which was found in Asia. Moreover, they turned out to be positive for the RHD haplotype, which indicated that exons 1-10 on one of the RHD alleles were entirely absent. In addition, a T>C mutation was observed at bases 1154-31 in intron 8 of the other allele, which was located at the intron 8 breakpoint. This result was obtained after further Sanger sequencing of exons 1-10 of the RHD gene. The mutant allele was designated as RHD*DEL37 by the International Society of Blood Transfusion (ISBT) and was identified as D-elute(Del) by phenotype ana-lysis. Both samples were genotyped as RHD*DEL37 and showed positive results. In summary, the true genotype of the two blood samples, of which the screening results only using serological testing method was negative, were RHD*DEL37 /RHD-(RHD*01N.01). Notably, this kind of genotype was reported for the first time in Chinese population. Moreover, the two individuals did not have ties of consanguinity, indicating that some of the Chinese individuals could be carriers of the genetic mutation. Therefore, it might be necessary to further confirm the frequency of this mutation in the Chinese population and the possibility of homozygosity for this mutation. This report identifies infrequent RHD gene mutation samples by coupling molecular biology and serological methods to prevent misclassification of blood groups. Combining serological and molecular biology test results to determine blood group is critical in protecting patients during clinical transfusion procedures.


Subject(s)
Blood Group Antigens , Rh-Hr Blood-Group System , Humans , Infant, Newborn , Alleles , Genotype , Molecular Biology , Phenotype , Rh-Hr Blood-Group System/genetics
11.
Biomed Res Int ; 2024: 5353528, 2024.
Article in English | MEDLINE | ID: mdl-38628500

ABSTRACT

Background: The purpose of this cross-sectional study was to determine the pattern of the ABO and rhesus D (RhD) blood group distribution among voluntary blood donors attending five blood donation centers at Nigist Eleni Mohammed General Hospital in Hossana, Ethiopia. Methods: A total of 1,120 participants who fulfilled the "who can give blood" criteria of the World Health Organization were selected randomly. Blood samples were collected, transported to the laboratory, and analyzed for ABO and RhD typing. The data was analyzed using descriptive statistics and chi-square correlation analysis. Results: The study found that the O blood group was the most prevalent (39.0%), followed by A (32.2%), B (22.5%), and AB (6.4%). When considering both the ABO and Rh blood groups together, 92.9% of blood donors were RhD positive, while only 7.1% were RhD negative. The distribution pattern of the ABO blood groups in Gurage Zone, Hadiya Zone, Kembata Zone, and Silte Zone showed that the O blood group was the most prevalent, followed by A, B, and AB, in that order. Conversely, the ABO blood group distribution pattern in Halaba Zone was A > O > B > AB. Civil servants from different occupational statuses were the most dominant voluntary blood donors, accounting for 53.2%, followed by students from different high schools and universities (41.9%), self-employed individuals (4.1%), and others (0.7%). The ABO blood group system had observed allele frequencies significantly different from the expected frequencies (p = 0.007), while the RhD system did not (p = 0.037). Allele frequencies for A, B, and O in the ABO system were 0.3531, 0.2576, and 0.3893, respectively. Observed frequencies for RhD-positive and RhD-negative alleles were 0.9647 and 0.0531, respectively. Conclusion: This study highlights the regional ABO and RhD blood group variations in Ethiopia, noting disparities from expected ABO allele frequencies, and identifies the O blood group predominance among donors with a high RhD-positive prevalence.


Subject(s)
ABO Blood-Group System , Blood Banks , Humans , Ethiopia/epidemiology , Cross-Sectional Studies , Prevalence , Gene Frequency/genetics , ABO Blood-Group System/genetics , Rh-Hr Blood-Group System/genetics , Hospitals, General
12.
Transfusion ; 64(4): 716-726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38497419

ABSTRACT

BACKGROUND: Red blood cell transfusion is an effective treatment for patients with sickle cell disease (SCD). Alloimmunization can occur after a single transfusion, limiting further usage of blood transfusion. It is recommended to match for the ABO, D, C, E, and K antigens to reduce risks of alloimmunization. However, availability of compatible blood units can be challenging for blood providers with a limited number of Black donors. STUDY DESIGN AND METHODS: A prospective cohort of 205 pediatric patients with SCD was genotyped for the RH and FY genes. Transfusion and alloimmunization history were collected. Our capacity to find RhCE-matched donors was evaluated using a database of genotyped donors. RESULTS: Nearly 9.8% of patients carried a partial D variant and 5.9% were D-. Only 45.9% of RHCE alleles were normal, with the majority of variants affecting the RH5 (e) antigen. We found an alloimmunization prevalence of 20.7% and a Rh alloimmunization prevalence of 7.1%. Since Black donors represented only 1.40% of all blood donors in our province, D- Caucasian donors were mostly used to provide phenotype matched products. Compatible blood for patients with rare Rh variants was found only in Black donors. A donor with compatible RhCE could be identified for all patients. CONCLUSION: Although Rh-compatible donors were identified, blood units might not be available when needed and/or the extended phenotype or ABO group might not match the patient. A greater effort has to be made for the recruitment of Black donors to accommodate patients with SCD.


Subject(s)
Anemia, Hemolytic, Autoimmune , Anemia, Sickle Cell , Humans , Child , Genotype , Prospective Studies , Rh-Hr Blood-Group System/genetics , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Blood Donors , ABO Blood-Group System/genetics , Isoantibodies
13.
Clin Lab ; 70(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38469779

ABSTRACT

BACKGROUND: Rh(D) phenotype in a sample from a 19-year-old female patient showed weak positivity (1+). A follow-up sample was requested to further define the Rh(D) phenotype, her Rh(D) phenotype was tested by using another reagent, Rh(D) phenotype still showed weak reactivity (1+), RhCcEe phenotype was Ccee. METHODS: Seven samples from the family members of the proposita were received. The RhDCcEe phenotypes were typed by the microcolumn gel card and the unexpected antibodies were assayed by indirect anti-human globulin test (IAT). Genomic DNA was extracted from the blood sample and the novel RHD1058G>C allele was detected through an established sequence-specific primer PCR (PCR-SSP), RHD exons 1 - 10 were sequenced afterward by exon-specific amplification. The distribution of RHD1058G>C allele and RHD weak positive phenotype were investigated in the pedigrees. RESULTS: The unexpected antibodies all were negative in the family members. The novel RHD1058G>C allele was found in the proposita, her father, and grandfather. Five family members were detected serologically with the common Rh(D)-positive phenotypes either as homozygote of RHD/RHD or heterozygote of RHD/RHd. Two family members were detected as weak D phenotypes in accordance with the genotyping results by PCR-SSP, and both of them have a D1058Ce haplotype and a dce haplotype. One member, her father, was tested common Rh(D)-positive with D1058Ce haplotype and a Dce haplotype. CONCLUSIONS: These data allow us to describe the characteristics of the weak D phenotype with a novel c.RHD-1058G>C allele, which may be partial D and increase the risk of RHD alloantibody. The novel RHD1058G>C allele was inherited in three generations in a family rather than spontaneous mutation in an individual.


Subject(s)
Asian People , Blood Group Antigens , Adult , Female , Humans , Young Adult , Alleles , Asian People/genetics , China , Genotype , Phenotype , Rh-Hr Blood-Group System/genetics
14.
J Mol Diagn ; 26(6): 456-466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494079

ABSTRACT

Patients who carry Rhesus (RH) blood group variants may develop Rh alloantibodies requiring matched red blood cell transfusions. Serologic reagents for Rh variants often fail to specifically identify variant Rh antigens and are in limited supply. Therefore, red blood cell genotyping assays are essential for managing transfusions in patients with clinically relevant Rh variants. Well-characterized DNA reference reagents are needed to ensure quality and accuracy of the molecular tests. Eight lyophilized DNA reference reagents, representing 21 polymorphisms in RHD and RHCE, were produced from an existing repository of immortalized B-lymphoblastoid cell lines at the Center for Biologics Evaluation and Research/US Food and Drug Administration. The material was validated through an international collaborative study involving 17 laboratories that evaluated each DNA candidate using molecular assays to characterize RHD and RHCE alleles, including commercial platforms and laboratory-developed testing, such as Sanger sequencing, next-generation sequencing, and third-generation sequencing. The genotyping results showed 99.4% agreement with the expected results for the target RH polymorphisms and 87.9% for RH allele agreement. Most of the discordant RH alleles results were explained by a limited polymorphism coverage in some genotyping methods. Results of stability and accelerated degradation studies support the suitability of these reagents for use as reference standards. The collaborative study results demonstrate the qualification of these eight DNA reagents for use as reference standards for RH blood group genotyping assay development and analytical validation.


Subject(s)
Genotyping Techniques , Rh-Hr Blood-Group System , Humans , Rh-Hr Blood-Group System/genetics , Genotyping Techniques/methods , Genotyping Techniques/standards , Genotype , Alleles , DNA/genetics , Reference Standards , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Genetic , Indicators and Reagents
15.
Blood Adv ; 8(11): 2651-2659, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38522094

ABSTRACT

ABSTRACT: Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH genotype matching can potentially mitigate Rh alloimmunization but comprehensive and accessible genotyping methods are needed. We developed RHtyper as an automated algorithm to predict RH genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, we adapted RHtyper for whole-exome sequencing (WES) data, which are more affordable but challenged by uneven sequencing coverage and exacerbated sequencing read misalignment, resulting in uncertain predictions for (1) RHD zygosity and hybrid alleles, (2) RHCE∗C vs. RHCE∗c alleles, (3) RHD c.1136C>T zygosity, and (4) RHCE c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes using WES data by leveraging machine learning models and improved the concordance of WES with WGS predictions from 90.8% to 97.2% for RHD and 96.3% to 98.2% for RHCE among 396 patients in the Sickle Cell Clinical Research and Intervention Program. In a second validation cohort of 3030 cancer survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study, the optimized RHtyper reached concordance rates between WES and WGS predications to 96.3% for RHD and 94.6% for RHCE. Machine learning improved the accuracy of RH predication using WES data. RHtyper has the potential, once implemented, to provide a precision medicine-based approach to facilitate RH genotype-matched transfusion and improve transfusion safety for patients with SCD. This study used data from clinical trials registered at ClinicalTrials.gov as #NCT02098863 and NCT00760656.


Subject(s)
Exome Sequencing , Genotype , Machine Learning , Rh-Hr Blood-Group System , Humans , Rh-Hr Blood-Group System/genetics , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genotyping Techniques/methods , Alleles
16.
Ann Lab Med ; 44(4): 307-313, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38384203

ABSTRACT

Rh hemolytic disease of the fetus and newborn is a potential risk for D-negative mothers who produce anti-D during pregnancy, which can lead to morbidity and mortality in subsequent pregnancies. To prevent this hemolytic disease, Rho(D) immune globulin (RhIG) is generally administered to D-negative mothers without anti-D at 28 weeks of gestation and shortly after delivery. However, current guidelines suggest that pregnant mothers with molecularly defined weak D types 1, 2, 3, 4.0, and 4.1 do not need RhIG as they are unlikely to produce alloanti-D when exposed to fetuses with D-positive red cells. This issue and the necessity of RHD genotyping have been extensively discussed in Western countries, where these variants are relatively common. Recent evidence indicates that women with Asian-type DEL (c.1227G>A) also do not form alloanti-D when exposed to D-positive red cells. We report that mothers with molecularly defined Asian-type DEL, similar to those with weak D types 1, 2, 3, 4.0, and 4.1, do not require RhIG before and after delivery. Collectively, this review could pave the way for the revision of international guidelines to include the selective use of RhIG based on specific genotypes, particularly in women with the Asian-type DEL.


Subject(s)
Rh Isoimmunization , Rh-Hr Blood-Group System , Pregnancy , Infant, Newborn , Humans , Female , Rh-Hr Blood-Group System/genetics , Rho(D) Immune Globulin , Rh Isoimmunization/prevention & control , Genotype , Erythrocytes
17.
Transfus Apher Sci ; 63(2): 103872, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272782

ABSTRACT

The DEL phenotype represents an intriguing and challenging aspect of blood group serology. This condition is characterized by an extremely weak expression of the D antigen on red blood cells, to the extent that it often eludes detection through routine serological methods. Identifying the DEL phenotype necessitates more specialized techniques, such as adsorption and elution tests, to reveal the presence of the D antigen. This distinctive phenotype underscores the complexity and subtlety of blood group genetics and highlights the importance of using advanced methods to accurately classify individuals with this condition, as their ability to form anti-D antibodies can have clinical implications during transfusion and pregnancy scenarios. There is a paucity of data for the DEL phenotype in the Indian population, and the molecular basis has not been elucidated yet. Our investigation delves into the genetic underpinnings of two distinct DEL phenotype cases that pose challenges for resolution through conventional serological techniques. We employ next-generation amplicon sequencing to unravel the intricate genetic landscape underlying these cases. In the D-negative donor, the DEL phenotype was first identified serologically, which was subsequently confirmed by molecular analysis. In the second case, it was associated with an anti-D antibody in a D-positive patient. Initial data analysis unveiled a substantial reduction in coverage across the exonic segments of the RHD gene in both samples, suggesting the potential presence of RHD exon deletions. On both occasions, we identified a homozygous intronic RHD polymorphism that is well established to be linked to the RHD* 01EL.32/RHD*DEL32 variant.


Subject(s)
Blood Transfusion , Rh-Hr Blood-Group System , Female , Pregnancy , Humans , Phenotype , Rh-Hr Blood-Group System/genetics , Exons , Erythrocytes , High-Throughput Nucleotide Sequencing , Alleles , Genotype , Blood Donors
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 52-58, 2024 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-38171560

ABSTRACT

OBJECTIVE: To develop a genotyping method for the Junior blood type and report on a rare blood type with Jr(a-). METHODS: Healthy O-type RhD+ volunteer donors of the Shenzhen Blood Center from January to May 2021 (n = 1 568) and a pedigree with difficult cross-matching (n = 3) were selected as the study subjects. Serological methods were used for proband's blood type identification, unexpected antibody identification, and antibody titer determination. Polymerase chain reaction-sequence specific primer (PCR-SSP) method was used for typing the proband's RhD gene. ABCG2 gene coding region sequencing and a PCR-SSP genotyping method were established for determining the genotypes of the proband and his family members and screening of Jra antigen-negative rare blood type among the 1 568 blood donors. RESULTS: The proband's ABO and RhD blood types were respectively determined as B and partial D (RHDDVI.3/RHD01N.01), Junior blood type Jra antigen was negative, and plasma had contained anti-D and anti-Jra. Sequencing of the ABCG2 gene revealed that the proband's genotype was ABGG201N.01/ABGG201N.01 [homozygous c.376C>T (p.Gln126X) variants], which is the most common Jr(a-) blood type allele in the Asian population. Screening of the voluntary blood donors has detected no Jr(a-) rare blood type. Statistical analysis of the heterozygotes suggested that the allelic frequency for ABCG2*01N.01 (c.376T) was 0.45%, and the frequency of Jr(a-) rare blood type with this molecular background was about 0.2‰. CONCLUSION: A very rare case of partial DVI.3 type and Jr(a-) rare blood type has been identified. And a method for identifying the Junior blood type through sequencing the coding regions of the ABCG2 gene and PCR-SSP has been established.


Subject(s)
Blood Group Antigens , Humans , Blood Group Antigens/genetics , Genotype , Genotyping Techniques , Heterozygote , Alleles , Blood Donors , Rh-Hr Blood-Group System/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...