Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Sci Rep ; 14(1): 11999, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796469

ABSTRACT

Allergic rhinitis is a prevalent inflammatory condition that impacts individuals of all age groups. Despite reports indicating the potential of berberine in alleviating allergic rhinitis symptoms, the specific molecular mechanisms and therapeutic targets of berberine remain unclear. This research aims to explore the pharmacological mechanism of berberine in the treatment of allergic rhinitis through bioinformatic analyses and experimental validation. The research utilized public databases to identify potential targets of berberine. Furthermore, differentially expressed genes (DEGs) related to allergic rhinitis were pinpointed from the GSE52804 dataset. Through bioinformatics techniques, the primary targets were discovered and key KEGG and GO-BP pathways were established. To confirm the therapeutic mechanisms of berberine on allergic rhinitis, an OVA-induced allergic rhinitis model was developed using guinea pigs. We identified 32 key genes responsible for the effectiveness of berberine in treating allergic rhinitis. In addition, five central genes (Alb, Il6, Tlr4, Ptas2, and Il1b) were pinpointed. Further examination using KEGG and GO-BP pathways revealed that the main targets were primarily involved in pathways such as NF-kappa B, IL-17, TNF, and inflammatory response. Molecular docking analysis demonstrated that berberine exhibited strong affinity towards these five key targets. Furthermore, the expression levels of IL-6, TLR4, PTGS2, and IL-1ß were significantly upregulated in the model group but downregulated following berberine treatment. This research has revealed the mechanism through which berberine combats allergic rhinitis and has identified its potential to regulate pathways linked to inflammation. These discoveries provide valuable insights for the development of novel medications for the treatment of allergic rhinitis.


Subject(s)
Berberine , Computational Biology , Molecular Docking Simulation , Rhinitis, Allergic , Berberine/pharmacology , Berberine/therapeutic use , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Animals , Guinea Pigs , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Humans , Male , Ovalbumin
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 419-427, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790098

ABSTRACT

Objective To investigate the effect of lysine 27 residue of histone H3 (H3K27) acetylation modification on the transcriptional promotion of long noncoding RNA OPA interacting protein 5-antisense RNA 1 (lncRNA OIP5-AS1) and apoptosis of nasal epithelial cells (NECs) in allergic rhinitis (AR) via regulating Toll-like receptor 4 (TLR4). Methods Interleukin-13 (IL-13) was used to treat NECs to establish an AR cell model. Real-time quantitative PCR was utilized to detect the expressions of OIP5-AS1 and TLR4 in nasal mucosal tissues of AR patients and in the in vitro cell model. The concentrations of macrophage colony-stimulating factor (GM-CSF), eotaxin-1, and mucin 5AC (MUC5AC) were detected by ELISA. The apoptosis of NECs was determined by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL). A dual-luciferase report experiment was carried out to verify the relationship between OIP5-AS1 and TLR4. Chromatin immunoprecipitation (ChIP) assay was performed to verify H3K27 acetylation of histones in the OIP5-AS1 promoter region. Results Compared with healthy controls and untreated NECs, OIP5-AS1 and TLR4 were both up-regulated in nasal mucosal tissues from AR patients and IL-13-stimulated NECs. Knockdown of OIP5-AS1 decreased the level of TLR4 in IL-13-treated NECs, while overexpression of OIP5-AS1 increased the level of TLR4. Inhibition of OIP5-AS1 reduced the apoptosis rate, and inhibited the secretion of GM-CSF, eotaxin-1, and MUC5AC from IL-13-treated NECs, while overexpression of TLR4 partially reversed the effects of OIP5-AS1 knockdown on NEC apoptosis and the secretion of GM-CSF, eotaxin-1, and MUC5AC. In addition, H3K27 acetylation was markedly enriched in the promoter region of OIP5-AS1, and H3K27 acetylation promoted the expression of OIP5-AS1 in IL-13-treated NECs. Conclusion H3K27 acetylation promotes OIP5-AS1 transcription and induces NEC apoptosis in AR via upregulation of TLR4.


Subject(s)
Apoptosis , Epithelial Cells , Granulocyte-Macrophage Colony-Stimulating Factor , Histones , Nasal Mucosa , RNA, Long Noncoding , Rhinitis, Allergic , Toll-Like Receptor 4 , Up-Regulation , Humans , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Acetylation , Apoptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Histones/metabolism , Histones/genetics , Nasal Mucosa/metabolism , Epithelial Cells/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Male , Female , Adult , Interleukin-13/genetics , Interleukin-13/metabolism , Chemokine CCL11/genetics , Chemokine CCL11/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Middle Aged
3.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764116

ABSTRACT

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Myeloid Differentiation Factor 88 , NF-kappa B , Rhinitis, Allergic , Toll-Like Receptor 4 , Animals , Female , Humans , Male , Rats , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Rats, Sprague-Dawley , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , Signal Transduction , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
4.
Innate Immun ; 30(2-4): 55-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38725177

ABSTRACT

Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.


Subject(s)
Fibroblasts , Interleukin-4 , Nasal Mucosa , Rhinitis, Allergic , Th2 Cells , Humans , Th2 Cells/immunology , Fibroblasts/immunology , Fibroblasts/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interleukin-4/metabolism , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Cells, Cultured , Female , Male , Adult , Middle Aged , Nasal Polyps/immunology , Lymphocyte Activation , Cell Differentiation
6.
J Neuroimmune Pharmacol ; 19(1): 16, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652402

ABSTRACT

Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.


Subject(s)
Disease Models, Animal , Neuroinflammatory Diseases , Pain Threshold , Rhinitis, Allergic , Seizures , Sex Characteristics , Animals , Female , Mice , Male , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/psychology , Pain Threshold/physiology , Neuroinflammatory Diseases/metabolism , Seizures/metabolism , Behavior, Animal/physiology , Ovariectomy , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
7.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 225-232, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650129

ABSTRACT

Abnormal expression of non-coding microRNA is associated with the development of combined allergic rhinitis and asthma syndrome (CARAS). However, the function of miR-4454 in CARAS is unknown. Our study aimed to reveal the clinical significance and related mechanism of miR-4454 in CARAS. Blood samples from 38 cases of CARAS and 43 cases of healthy subjects were collected to detect the expression of miR-4454. House dust mite (HDM) sensitization and challenge-induced bronchial epithelial cells to simulate the asthma state model in vitro, miR-4454 mimics and inhibitor transfection to detect the expression level of pro-inflammatory cytokines, cell survival rate and migration ability, flow cytometry and western blot (WB) Detection of cell cycle, apoptosis and inflammation-related protein levels. Compared with healthy controls, the expression of miR-4454 in the blood of CARAS patients was significantly up-regulated, and IL-6 and IL-8 were significantly up-regulated in the HDM treatment group, indicating that the model induction was successful. After overexpression of miR-4454, cell proliferation and migration in the HDM-treated group were significantly inhibited, and the levels of early apoptosis and inflammation-related proteins (IL-17, IL-17RD, TNF-α, GCSF and NF-κB) were increased High; after inhibiting miR-4454, cell proliferation and migration were significantly enhanced, and the levels of apoptosis and inflammation-related proteins were decreased. This study found that inhibiting the expression of miR-4454 can improve HDM-induced cell injury, which may be related to miR-4454 regulating the activation of IL-17/NF-кB inflammatory axis.


Subject(s)
Apoptosis , Asthma , Cell Proliferation , MicroRNAs , Rhinitis, Allergic , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Asthma/genetics , Asthma/pathology , Male , Female , Apoptosis/genetics , Adult , Cell Proliferation/genetics , Animals , Inflammation/genetics , Inflammation/pathology , Cell Movement/genetics , Pyroglyphidae/immunology , Cytokines/metabolism , Cytokines/blood , NF-kappa B/metabolism , Case-Control Studies , Epithelial Cells/metabolism , Syndrome , Clinical Relevance
8.
Brain Res ; 1833: 148885, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38531465

ABSTRACT

BACKGROUND: Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS: Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS: The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1ß and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1ß and INOS significantly diminished. CONCLUSION: IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.


Subject(s)
Disease Models, Animal , Interleukin-6 , Olfaction Disorders , Rhinitis, Allergic , Animals , Mice , Interleukin-6/metabolism , Microglia/metabolism , Olfaction Disorders/metabolism , Olfactory Bulb/metabolism , Ovalbumin , Rhinitis, Allergic/metabolism , Male , Mice, Inbred C57BL
9.
Sci Rep ; 14(1): 4021, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369554

ABSTRACT

Allergic rhinitis (AR) remains a major health problem worldwide. Compared with traditional oral drugs, nasal administration avoids first-pass metabolism and achieve faster and more effective efficacy. In this study, we used the ion crosslinking method to prepare quercetin-chitosan nasal adaptive nanomedicine (QCS) delivery system and evaluated in the treatment of allergic rhinitis mice models. The obtained positively charged nanoparticles with a particle size of 229.2 ± 0.2 nm have excellent characteristics in encapsulation efficiency (79.604%), drug loading rate (14.068%), drug release (673.068 µg) and stability(> 7 days). Excitingly, QCS treatment significantly reduced the number of sneezing and nasal rubbing events in AR mice, while reducing the levels of inflammatory factors such as immunoglobulin E (IgE), interleukin (IL)-17, tumor necrosis factor (TNF)-α, and (IL)-6 to alleviate AR symptoms. Hematoxylin-eosin (HE) staining also showed the damaged nasal mucosa was improved. These experimental results suggest that QCS can effectively suppress allergic inflammation in a mouse model and hold promise as a therapeutic option for allergic rhinitis.


Subject(s)
Chitosan , Nanoparticles , Rhinitis, Allergic , Mice , Animals , Chitosan/pharmacology , Quercetin/pharmacology , Rhinitis, Allergic/metabolism , Nasal Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Ovalbumin/metabolism , Cytokines/metabolism
10.
Rhinology ; 62(3): 299-309, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38372647

ABSTRACT

BACKGROUND: Nasal hyperreactivity (NHR) is prevalent in all chronic upper airway inflammatory phenotypes, including allergic rhinitis (AR) and chronic rhinosinusitis with nasal polyps (CRSwNP). Although NHR in patients with non-allergic rhinitis is mediated by neuronal pathways, AR and CRSwNP are mainly characterized by type 2 inflammation. METHODS: Eighteen healthy controls and 45 patients with symptomatic AR/CRSwNP underwent a cold, dry air (CDA) provocation test for objective diagnosis of NHR. Before and after, questionnaires were filled out and nasal secretions and biopsies were collected. Markers for neurogenic inflammation (substance P, calcitonin gene-related peptide, neurokinin A), epithelial activation (IL-33), and histamine were measured in secretions by ELISA; and expression of neuronal markers PGP9.5, TRPV1, and TRPM8 was studied in biopsies by RT-q-PCR. Effects of histamine on TRPV1/A1 were studied with Ca2+-imaging using murine trigeminal neurons. RESULTS: CDA-provocation reduced peak nasal inspiratory flow (PNIF) of patients with subjective NHR but not of non-NHR controls/patients CDA-provocation reduced peak nasal inspiratory flow (PNIF) of patients with subjective NHR but not of non-NHR controls/patients. Subjective (subjectively reported effect of CDA) and objective (decrease in PNIF) effects of CDA were significantly correlated. Levels of neuropeptides and histamine in nasal secretions and mRNA expression of PGP9.5, TRPV1, and TRPM8 correlated with CDA-induced PNIF-reduction. CDA-provocation induced an increase in IL-33-levels. Both TRPV1 and TRPA1 expressed on afferent neurons were sensitized by exposure to histamine. CONCLUSION: NHR is not an on/off phenomenon but spans a continuous spectrum of reactivity. A neurogenic inflammatory background and increased histamine-levels are risk factors for NHR in AR/CRSwNP.


Subject(s)
Nasal Polyps , Rhinitis, Allergic , Sinusitis , TRPV Cation Channels , Humans , Sinusitis/metabolism , Nasal Polyps/metabolism , Nasal Polyps/complications , Rhinitis, Allergic/metabolism , Chronic Disease , Male , Female , Adult , TRPV Cation Channels/metabolism , Middle Aged , TRPM Cation Channels/metabolism , Nasal Mucosa/metabolism , Histamine/metabolism , Ubiquitin Thiolesterase/metabolism , Mice , Rhinitis/metabolism , Animals , Case-Control Studies , Nasal Provocation Tests , Rhinosinusitis
11.
Front Immunol ; 14: 1295921, 2023.
Article in English | MEDLINE | ID: mdl-38077338

ABSTRACT

Introduction: Neutrophil extracellular traps (NETs) are structures released by neutrophils in response to various infections. NETs have a biocidal role and have been demonstrated to be effective against bacteria, fungi, viruses, and parasites. Depending on the situation, NETs can protect the host from pathogen invasion or contribute to the development of autoimmune diseases such as cystic fibrosis and rheumatoid arthritis. In this study, we aimed to investigate the occurrence of NET as one of the components in upper respiratory tract secretions in infectious and allergic diseases. Methods: Nasal mucus was collected from donors diagnosed with infectious rhinitis or allergic rhinitis. The extracellular DNA content was determined using SytoxGreen staining, and the total protein pool was determined using the microBCA method. Micrococcal nuclease was used to digest the samples and ELISA was employed to identify the NET proteins. The enzymatic activity of elastase was determined. Results: Our findings showed that nasal mucus collected from patients with infectious rhinosinusitis contained extracellular DNA that could come from a variety of sources, responsible for increasing the density and viscosity of secretions, as well as NETs proteins. The identified enzymatic activity of NET elastase indicates the possible irritation of nasal tissues. However, the DNA content was not identified in the samples from allergic patients. In addition, we have shown in preliminary studies that therapy using N-acetylcysteine can liquefy nasal secretions. Discussion: The study suggests that the composition of nasal mucus varies according to the cause of mucosal irritation. The presence of DNA and NET proteins can have severe consequences for the therapeutic process prolonging treatment. The low viscosity of nasal mucus in allergic patients facilitates mucosal flushing and the removal of allergens. Understanding the occurrence and role of NETs in various respiratory diseases is critical for developing effective treatment strategies that consider the complex interaction between the immune system and pathogens. The results of this study suggest that NETs may be present in upper respiratory tract secretions with an infectious background, supporting basic defense mechanisms using eosinophils and EETs. Further research is needed to explore the potential of NETs as a therapeutic target in respiratory diseases.


Subject(s)
Extracellular Traps , Rhinitis, Allergic , Humans , Neutrophils , Rhinitis, Allergic/metabolism , Inflammation/metabolism , Pancreatic Elastase , DNA/metabolism
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(12): 1100-1107, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38140870

ABSTRACT

Objective To investigate the expressions of IL-18, IL-18 binding protein isoform a (IL-18BPa) and IL-18 receptor α (IL-18Rα) in blood CD4+ Th2 cells of patients with allergic rhinitis (AR) and the effects of allergens on their expressions. Methods Blood samples of AR patients and healthy control subjects (HCs) were collected. Peripheral blood mononuclear cells (PBMCs) and CD4+ T cells sorted by immunomagnetic beads were stimulated by crude extract of Artemisia sieversiana wild allergen (ASWE), Platanus pollen (PPE) and house dust mite extract (HDME). Flow cytometry was used to detect the expression of IL-18, IL-18BPa and IL-18Rα in CD4+ Th2 cells, and BioPlex was used to detect the level of plasma IL-4 and analyze its correlation with the proportion of IL-18+ Th2 cells. Results Compared with HCs, the proportion of IL-18+ cells was increased in Th2 cells of AR patients; MFI of IL-18 was increased, while that of IL-18Rα was decreased. Moreover, allergens induced IL-18 and IL-18Rα expression in sorted CD4+ Th2 cells of HCs and induced IL-18Rα in that of AR patients. Additionally, elevated plasma IL-4 level was found in AR patients, which was moderately correlated with the percentage of IL-18+ Th2 cells. Conclusion Allergens may be involved in the pathogenesis of AR by inducing expression of IL-18 in peripheral blood CD4+ Th2 cells.


Subject(s)
Rhinitis, Allergic , Th2 Cells , Humans , Interleukin-18/metabolism , Up-Regulation , Leukocytes, Mononuclear/metabolism , Interleukin-4/metabolism , Rhinitis, Allergic/metabolism , Allergens , Cytokines/metabolism
13.
Mol Med ; 29(1): 160, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012545

ABSTRACT

BACKGROUND: Anxiety and depression-like behaviors in allergic rhinitis (AR) are attracting attention, while the precise mechanism has not been clearly elucidated. Recent evidence shows that neuroinflammation in anterior cingulate cortex (ACC) may be the core of these neuropsychiatric symptoms in AR. Here, we investigated the molecular link between the anxiety and depression-like behaviors and neuroinflammation in ACC. METHODS: Mice were sensitized and challenged with ovalbumin (OVA) to induce AR. Nasal inflammation levels were assessed by H&E staining and PAS staining. Anxiety and depression-like behaviors were evaluated by behavioral experiments including open field test, forced swimming test, and sucrose preference test. Neuronal impairment was characterized via Nissl staining and 18FDG-PET. The role of ten-eleven translocation 2 (TET2) in AR-related anxiety and depression was assessed by Tet2-/- mice. In addition, the murine BV2 microglial cell line was utilized to explore the molecular mechanisms by which TET2 mediates neuroinflammation. The levels of TET2, NLRP3 and their downstream molecules were detected by immunohistochemistry, Western blot, Dot blot and ELISA. The effects of metformin on depression-like behaviors in AR mice were also evaluated. RESULTS: AR mice showed significant anxiety and depression-like behaviors, which associated with the activation of ACC. Loss of TET2 activated the NLRP3/IL-1ß pathway of microglia in AR mice, further accelerating the anxiety and depression-like behaviors. In addition, knockdown of TET2 activated the NLRP3/IL-1ß pathway in BV2 cells. Metformin improved the neuropsychiatric symptoms of AR mice by reducing the activation of NLRP3/IL-1ß pathway after upregulating TET2. CONCLUSION: TET2 deficiency activates the NLRP3/IL-1ß pathway of microglia in the ACC, promoting the pathological process of anxiety and depression-like behavior in AR. Metformin could be effective in treating neuroinflammation by regulating microglia via TET2 up-regulation, indicating that metformin is a potential way to treat anxiety and depression-like behaviors in AR.


Subject(s)
Anxiety , DNA-Binding Proteins , Depression , Dioxygenases , Metformin , Rhinitis, Allergic , Animals , Mice , Anxiety/metabolism , Depression/metabolism , Inflammasomes/metabolism , Metformin/pharmacology , Microglia/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rhinitis, Allergic/metabolism , DNA-Binding Proteins/genetics , Dioxygenases/genetics
14.
Int J Mol Med ; 52(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37888754

ABSTRACT

Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell­derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC­derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti­allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.


Subject(s)
Exosomes , Extracellular Vesicles , Rhinitis, Allergic , Humans , Rhinitis, Allergic/metabolism , Allergens , Dendritic Cells
15.
Medicine (Baltimore) ; 102(37): e34921, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713866

ABSTRACT

This research aimed to explore the serum high-mobility group box 1 (HMGB1) and high-mobility group box 2 (HMGB2) levels in allergic rhinitis (AR) children and its correlation with clinical results. This present prospective observational study enrolled 179 AR children and 100 healthy children who came to our hospital during October 2020 to August 2022. The serum HMGB1, HMGB2, interleukin (IL)-6, IL-1ß, interferon-γ, and C-reactive protein (CRP) levels were measured by enzyme-linked immunosorbent assay. Demographic and clinical statistics including age, body mass index (BMI), sex, diastolic blood pressure, SBP, family history of allergy, Visual Analogue Score (VAS) and Rhinoconjunctivitis Quality of Life Questionnaire were collected. All data used SPSS 18.0 to statistical analyses. The proportion of family history of allergy was obviously higher in the AR group than that in the healthy group. The serum levels of HMGB1, HMGB2 and cytokines were remarkably enhanced in the AR patients. Spearman analysis supported that positive correlation existed among the HMGB1, HMGB2, CRP, IL-6 and IL-1ß levels. Serum IL-6, CRP, HMGB2, IL-1ß, VAS score and Rhinoconjunctivitis Quality of Life Questionnaire score levels were significantly higher and serum interferon-γ levels were significantly lower in the HMGB1 high expression group. Similar results were found in in the HMGB2 high group compared to the HMGB2 low group. In addition, HMGB1 and HMGB2 could be potential diagnostic biomarkers of AR patients. Finally, we found that HMGB1, HMGB2, IL-6, IL-1ß, and family history of allergy were the risk factors for AR. This study showed that the serum HMGB1 and HMGB2 levels was remarkably enhanced in AR patients and closely associated with cytokines. This study may provide new targets and a comprehensive approach for the treatment of AR patients.


Subject(s)
HMGB1 Protein , HMGB2 Protein , Rhinitis, Allergic , Child , Humans , Conjunctivitis , Cytokines , Interferon-gamma , Interleukin-6 , Quality of Life , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism
16.
Int Immunopharmacol ; 124(Pt B): 110875, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742368

ABSTRACT

BACKGROUND: Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE: We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS: Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS: Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION: Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Rhinitis, Allergic , Humans , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Mesenchymal Stem Cells/metabolism , Rhinitis, Allergic/therapy , Rhinitis, Allergic/metabolism , Hypoxia/therapy , Hypoxia/metabolism , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism
17.
Am J Rhinol Allergy ; 37(6): 739-750, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37537875

ABSTRACT

BACKGROUND: Airway remodeling is demonstrated in Asian patients with allergic rhinitis (AR). The epithelial-mesenchymal transition (EMT) is one of the key mechanisms underlying airway remodeling. Thymic stromal lymphopoietin (TSLP) is an important contributor to airway remodeling. Although increased TSLP is found in AR, little is known about whether TSLP is involved in airway remodeling through induction of the EMT. OBJECTIVE: We investigated the effect of TSLP on the EMT in human nasal epithelial cells (HNECs) from AR patients. METHODS: Human nasal epithelial cells from AR patients were stimulated with TSLP in the absence or presence of the preincubation with a selective inhibitor of transforming growth factor beta 1 (TGF-ß1) receptor (SB431542). The expression of TGF-ß1 in the cells was evaluated by using real-time polymerase chain reaction, Western blotting, and immunocytochemistry. Western blotting and immunocytochemistry were used to assay EMT markers including vimentin, fibroblast-specific protein 1 (FSP1) and E-cadherin, small mothers against decapentaplegic homolog2/3 (Smad2/3), and phosphorylated Smad2/3 in the cells. The levels of extracellular matrix components such as collagens I and III in supernatants were measured by enzyme-linked immunoassay. Morphological changes of the cells were observed under inverted phase-contrast microscope. RESULTS: A concentration-dependent increase of TGF-ß1 mRNA and protein was observed following stimulation with TSLP. Furthermore, TSLP decreased the expression of E-cadherin protein, but upregulated the production of FSP1 and vimentin proteins along with increased levels of collagens I and III, and the morphology of the cells was transformed into fibroblast-like shape. Additionally, a significant increase was found in phosphorylation of Smad2/3 protein. However, these effects were reversed by SB431542 preincubation. CONCLUSION: TSLP-induced HNECs to undergo the EMT process via TGF-ß1-mediated Smad2/3 activation. TSLP is an activator of the EMT in HNECs and might be a potential target for inhibiting EMT and reducing airway remodeling in AR.


Subject(s)
Rhinitis, Allergic , Thymic Stromal Lymphopoietin , Transforming Growth Factor beta1 , Humans , Airway Remodeling , Cadherins/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Rhinitis, Allergic/metabolism , Transforming Growth Factor beta1/genetics , Vimentin/metabolism
18.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569890

ABSTRACT

Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been investigated. This study examined the effect of FJE against CARAS in an ovalbumin (OVA)-induced CARAS mouse model. Six-week-old male BALB/c mice were randomly segregated into six groups. Mice were sensitized intraperitoneally with OVA on days 1, 8, and 15, and administered saline, Dexamethasone (1.5 mg/kg), or FJE (50, 100, or 200 mg/kg) once a day for 16 days. Nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokine production, mast cell activation, and nasal histopathology were assessed. Administration of FJE down-regulated OVA-specific IgE and up-regulated OVA-specific IgG2a in serum. FJE reduced the production of T helper (Th) type 2 cytokines, and the Th1 cytokine levels were enhanced in nasal and bronchoalveolar lavage fluid. Moreover, FJE positively regulated allergic responses by reducing the accumulation of inflammatory cells, improving nasal and lung histopathological characteristics, and inhibiting inflammation-associated cytokines. FJE positively modulated the IL-33/TSLP/NF-B signaling pathway, which is involved in regulating inflammatory cells, immunoglobulin levels, and pro-inflammatory cytokines at the molecular level.


Subject(s)
Asthma , Fallopia japonica , Rhinitis, Allergic , Animals , Male , Mice , Asthma/chemically induced , Asthma/drug therapy , Asthma/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Fallopia japonica/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-33/pharmacology , Mice, Inbred BALB C , NF-kappa B/metabolism , Ovalbumin , Rhinitis, Allergic/metabolism , Signal Transduction
19.
Neurochem Res ; 48(12): 3639-3651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574530

ABSTRACT

Allergic rhinitis (AR) is a widespread disease that is frequently comorbid with depression. However, the mechanisms and treatments for depression in AR remain underexplored. Metformin, a widely used antidiabetic drug, has shown antidepressant effects. The aim of this study was to explore the effects and potential mechanisms of metformin on depression-like behaviors in an AR mouse model. In the present study, mice were sensitized and challenged with ovalbumin (OVA) to induce AR. Results showed that mice with AR exhibited significant depression-like behavior which was attenuated by metformin. In addition, the levels of expression of synaptic plasticity markers (anti-microtubule-associated protein 2, synaptophysin, postsynaptic density protein 95), neurogenesis markers (doublecortin and Ki-67), and brain-derived neurotrophic factor were decreased in the olfactory bulb (OB) of mice with AR, while metformin ameliorated all these alterations and reduced apoptosis in the OB of these mice. Furthermore, it enhanced the phosphorylation of AMP-activated kinase (AMPK) and the levels of ten-eleven translocation 2 (TET2) and 5-hydroxymethylcytosine in the OB. In conclusion, our findings suggest that metformin might be a viable strategy for treating AR-related depression, possibly by modulating neuroplasticity, neurogenesis, apoptosis, and BDNF signaling in the OB via the AMPK/TET2 pathway.


Subject(s)
Metformin , Rhinitis, Allergic , Mice , Animals , Depression/metabolism , Olfactory Bulb , Metformin/pharmacology , Metformin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Rhinitis, Allergic/metabolism , Disease Models, Animal
20.
Eur J Pharmacol ; 955: 175902, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37422119

ABSTRACT

Allergic rhinitis (AR) is a nasal mucosal disease with sneezing and nasal itching as the main symptoms. Although AR treatment continues to improve, there remains a lack of effective drugs. There are still controversies regarding whether anticholinergic drugs can effectively and safely relieve the symptoms of AR and reduce inflammation in the nasal mucosa. Here, we synthesized 101BHG-D01, which is a novel anticholinergic drug that mainly targets the M3 receptor and may reduce the adverse effects of other anticholinergic drugs on the heart. We evaluated the effects of 101BHG-D01 on AR and investigated the potential molecular mechanism of anticholinergic therapy for AR. We found that 101BHG-D01 effectively alleviated AR symptoms, reduced the infiltration of inflammatory cells and attenuated the expression of inflammatory factors (IL-4, IL-5, IL-13, etc.) in various AR animal models. In addition, 101BHG-D01 reduced the activation of mast cells and the release of histamine from rat peritoneal mesothelial cells (RPMCs) challenged by IgE. Moreover, 101BHG-D01 reduced the expression of MUC5AC in IL-13-challenged rat nasal epithelial cells (RNECs) and human nasal epithelial cells (HNEpCs). Furthermore, IL-13 stimulation significantly increased JAK1 and STAT6 phosphorylation, which was suppressed by 101BHG-D01. We demonstrated that 101BHG-D01 reduced mucus secretion and inflammatory cell infiltration in the nasal mucosa, which may occur through a reduction in activation of the JAK1-STAT6 signaling pathway, indicating that 101BHG-D01 is a potent and safe anticholinergic therapy for AR.


Subject(s)
Interleukin-13 , Rhinitis, Allergic , Humans , Rats , Animals , Mice , Interleukin-13/metabolism , Immunoglobulin E , Disease Models, Animal , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/metabolism , Nasal Mucosa , Mice, Inbred BALB C , Ovalbumin/pharmacology , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...