Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Rev Bras Parasitol Vet ; 33(2): e001524, 2024.
Article in English | MEDLINE | ID: mdl-38695451

ABSTRACT

Rhipicephalus (Boophilus) microplus is a leading cause of significant economic losses in the livestock industry, and tick populations have developed multiple forms of resistance to acaricides; therefore, the potential of novel natural bioactive compounds that are effective for targeting ticks must be addressed. The aim of this study was to evaluate the acaricidal and anticholinesterase activities of R. aculeata seeds and to identify naturally occurring compounds that potentially inhibit anticholinesterase through in silico docking. The acaricidal activity of the extract of R. aculeata seeds against larval and adult R. microplus ticks was assessed through immersion tests. Inhibition of anticholinesterase activity was measured spectrophotometrically. Extracts of R. aculeata seeds showed activity against larvae and engorged females of R. microplus, and a reduction in the reproductive index were also observed. Rutin, chlorogenic acid, quercetin, and epicatechin exhibited noteworthy interactions with the active site residues of RmAChE. These findings could significantly contribute to the exploration of novel natural products that can potentially inhibit RmAChE and could be used in the development of new acaricides for tick control.


Subject(s)
Acaricides , Cholinesterase Inhibitors , Plant Extracts , Rhipicephalus , Seeds , Animals , Rhipicephalus/drug effects , Acaricides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds/chemistry , Cholinesterase Inhibitors/pharmacology , Computer Simulation , Female , Molecular Docking Simulation
2.
Exp Appl Acarol ; 92(4): 851-870, 2024 May.
Article in English | MEDLINE | ID: mdl-38642307

ABSTRACT

Blood feeding and digestion are vital physiological activities essential for the survival and reproduction of ticks. Chemical acaricides viz., ivermectin, amitraz and fipronil, are known to act on the central nervous system, resulting in the mortality of ticks. The present study is focused on the effect of these acaricides on the midgut and gut enzymes of Rhipicephalus microplus. The ultra-thin sections of midgut of ivermectin-treated ticks showed irregular basal membrane and ruptured digestive vesicles. Amitraz treatment resulted in a notable decrease in digestive cells with pleats in the basal membrane, while fipronil-exposed ticks exhibited reduced digestive cells, loss of cellular integrity, and disintegration of the basal membrane and muscle layer. The gut tissue homogenate of ivermectin and fipronil treated ticks showed a significant reduction of cathepsin D level, 76.54 ± 3.20 µg/mL and 92.67 ± 3.72 µg/mL, respectively, as compared to the control group (150.0 ± 3.80 µg/mL). The leucine aminopeptidase level (4.27 ± 0.08 units/mL) was significantly decreased in the ivermectin treated ticks compared to other treatment groups. The acid phosphatase activity (29.16 ± 0.67 µmole/min/L) was reduced in the ivermectin treated group whereas, increased activity was observed in the fipronil and amitraz treated groups. All the treatment groups revealed increased alkaline phosphatase levels (17.47-26.72 µmole/min/L). The present finding suggests that in addition to the established mechanism of action of the tested acaricides on the nervous system, the alterations in the cellular profile of digestive cells and enzymes possibly affect the blood digestion process and thus the synthesis of vital proteins which are essential for vitellogenesis, and egg production in ticks.


Subject(s)
Acaricides , Ivermectin , Pyrazoles , Rhipicephalus , Toluidines , Animals , Rhipicephalus/drug effects , Rhipicephalus/physiology , Ivermectin/pharmacology , Pyrazoles/pharmacology , Toluidines/pharmacology , Acaricides/pharmacology , Female , Epithelium/drug effects , Gastrointestinal Tract/drug effects
3.
Vet Parasitol ; 328: 110171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552269

ABSTRACT

The objectives of this study were to develop a self-emulsifying drug delivery system (SEDDS) to enhance the stability and efficacy of Cymbopogon citratus essential oil or lemongrass oil (LEO) against cattle tick larvae and engorged females. The system with the highest oil loading in SEDDS was composed of LEO (23.33%w/w), Tween 80: SGKH 4000 in a 2:1 ratio as surfactant (66.67%w/w), and propylene glycol as co-surfactant (10%w/w). The selected SEDDS-LEO has a particle size of 18.78 nm with a narrow size distribution (polydispersity index of 0.27). Notably, the stability of SEDDS was superior to that of the original oil, both during long-term storage and under accelerated conditions. SEDDS-LEO at oil concentrations ranging from 1.458% to 5.833% w/v showed a significantly higher percentage of egg-laying reduction against adult ticks compared with the original oil at the same concentrations (p < 0.05). Furthermore, SEDDS-LEO demonstrated greater larvicidal efficacy than the original oil, with lower LC50 and LC90 values of 0.91 mg/mL and 1.20 mg/mL, respectively, whereas the original oil's LC50 and LC90 values were 1.17 mg/mL and 1.74 mg/mL, respectively. Our findings indicate that SEDDS-LEO is a promising candidate for use as an acaricide in the control of tick populations in dairy cattle.


Subject(s)
Acaricides , Cymbopogon , Drug Delivery Systems , Oils, Volatile , Rhipicephalus , Animals , Rhipicephalus/drug effects , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acaricides/administration & dosage , Female , Cattle , Larva/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Cattle Diseases/drug therapy , Emulsions/chemistry , Drug Stability , Tick Infestations/veterinary , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Tick Infestations/parasitology , Terpenes
4.
Exp Appl Acarol ; 91(3): 497-507, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37870735

ABSTRACT

The repellent activity of Chinese cinnamon oil (Cinnamomum cassia) on nymphal ticks (Haemaphysalis longicornis Neumann, Rhipicephalus haemaphysaloides Supino, and Hyalomma asiaticum Schulze and Schlottke) was evaluated in a sample Y-tube bioassay. The results were based on the vertical migration of ticks during the host-seek phase and showed a dose-dependent repellent effect of Chinese cinnamon oil on the tested nymphs after 6 h. For H. longicornis, R. haemaphysaloides, and H. asiaticum at the concentrations (vol/vol) of 3, 3, and 1.5%, the repellent percentages over time were 68-97, 69-94, and 69-93%, respectively, which indicated strong repellent activities against ticks, similar to the positive control DEET (N,N-diethyl-3-methylbenzamide). Chinese cinnamon oil exerted the strongest effect on H. asiaticum nymphs. To our knowledge, this is the first study to investigate the repellent effects of Chinese cinnamon oil on ticks. Chinese cinnamon oil has considerable potential and should be developed as a practical tick repellent.


Subject(s)
Cinnamomum aromaticum , Insect Repellents , Ixodidae , Nymph , Oils, Volatile , Plant Oils , Animals , Insect Repellents/pharmacology , Ixodidae/drug effects , Ixodidae/growth & development , Nymph/drug effects , Oils, Volatile/pharmacology , Rhipicephalus/drug effects , Rhipicephalus/growth & development , China , Plant Oils/pharmacology
5.
Parasitol Res ; 122(10): 2267-2278, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37493957

ABSTRACT

The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.


Subject(s)
Acaricides , Rhipicephalus , Tick Control , Animals , Cattle , Hydrogen-Ion Concentration , Acaricides/chemistry , Acaricides/pharmacology , Emulsions , Tick Control/methods , Pyrethrins/chemistry , Pyrethrins/pharmacology , Organophosphates/chemistry , Organophosphates/pharmacology , Rhipicephalus/drug effects
6.
Ticks Tick Borne Dis ; 12(6): 101818, 2021 11.
Article in English | MEDLINE | ID: mdl-34537543

ABSTRACT

Rhipicephalus microplus is posing a serious threat to productive animal husbandry. Excessive use of synthetic chemicals in tick management has led to the development of resistant tick populations. Characterization of resistance to deltamethrin, cypermethrin, coumaphos and ivermectin in ticks is necessary to develop a suitable and sustainable control strategy. Based on adult immersion test and larval packet test, the resistance ratios (RR50) for adults and larvae of R. microplus populations from two Indian states ranged from 3.8 to 19.4 and 1.35-25.0 against deltamethrin, 0.061-26.3 and 0.22-19.2 against cypermethrin, and 0.2-9.5 and 0.01-3.1 against coumaphos, respectively, were recorded. Moreover, the RR50 for adults ranged from 0.212 to 3.87 against ivermectin. The RR50 for different acaricides was significantly (p<0.01) correlated with esterases, Glutathione S-transferase and monooxygenase activity. A point mutation at the 190th position of the domain II S4-5 linker region of the sodium channel gene in synthetic pyrethroids (SP) resistant populations was also detected. An antitick natural formulation prepared from the plant Azeratum conyzoides and containing two major compounds, Precocene-I (7­methoxy-2, 2-dimethyl 2H-chromene) and Precocene II (6, 7-dimethoxy-2, 2-dimethyl- 3-chromene), was developed and tested against the resistant ticks. The LC50 values of the natural formulation against the resistant populations were in the range of 4.31-5.33% irrespective of their RR50 values. Multi-acaricide resistant populations of R. microplus are established in India and the A. conyzoides based natural formulation can be used for its management.


Subject(s)
Acaricides/pharmacology , Ageratum/chemistry , Rhipicephalus/drug effects , Animals , Coumaphos/pharmacology , Drug Resistance , Female , India , Ivermectin/pharmacology , Larva/drug effects , Larva/growth & development , Male , Nitriles/pharmacology , Pyrethrins/pharmacology , Rhipicephalus/growth & development
7.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 503-514, sept. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1369017

ABSTRACT

The present study aimed to analyze the chemical composition of the essential oil from Garcinia gardneriana (Planchon & Triana) Zappi leaves and fruits, and to determine its acaricidal activity on Rhipicephalus microplusy larval packet test and larvicidal action on Aedes aegyptiby larval immersion test. The chemical analysis of the essential oil by gas chromatography-mass spectrometry identified sesquiterpene hydrocarbons and oxygenated sesquiterpenes in bacupari leaves and fruits, and α-cedrene, α-chamigrene, α-trans-bergamotene, and ß-curcumene as major compounds. Essential oil from leaves of G. gardneriana presented acaricidal activity on R. microplus (LC50= 4.8 mg/mL; LC99= 10.8 mg/mL) and larvicidal effect on A. aegypti (LC50= 5.4 mg/mL; LC99 = 11.6 mg/mL), where as essential oil from the fruits of G. gardneriana showed LC50= 4.6 mg/mL and LC99= 8.9 mg/mL against R. microplus and LC50= 6.4 mg/mL and LC99= 13.9 mg/mL against A. aegypti. These results thus demonstrate the potential acaricidal and larvicidal activity of essential oil of G. gardneriana, offering new perspectives for the realization of bioassays from this essential oil.


El presente estudio tuvo como objetivo analizar la composición química del aceite esencial de las hojas y frutos de Garcinia gardneriana (Planchon & Triana) Zappi, y determinar su actividad acaricida en Rhipicephalus microplus y larvicida en Aedes aegypti empleando la prueba de inmersión de larvas. El análisis químico del aceite esencial por cromatografía de gases-espectrometría de masas identificó hidrocarburos sesquiterpénicos y sesquiterpenos oxigenados en hojas y frutos de bacupari, y α-cedreno, α-chamigreno, α-trans-bergamoteno y ß-curcumeno como compuestos principales. El aceite esencial obtenido de las hojas de G. gardneriana presentó actividad acaricida en la garrapata del ganado (LC50= 4,8 mg/mL; LC99= 10,8 mg/mL) y actividad larvicida en A. aegypti (LC50= 5,4 mg/mL; LC99= 11,6 mg/mL), así como, el aceite esencial obtenido de los frutos de G. gardneriana mostró LC50= 4,6 mg/mL y LC99= 8,9 mg/mL contra las larvas de garrapatas de ganado y LC50= 6,4 mg/mL y LC99= 13,9 mg/mL en las larvas de A. aegypti. Por lo tanto, estos resultados demuestran la actividad acaricida y larvicida del aceite essencial de G. gardneriana, ofreciendo nuevas perspectivas para la realización de bioensayos a partir de este aceite esencial.


Subject(s)
Animals , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Garcinia/chemistry , Insecticides/pharmacology , Sesquiterpenes/analysis , Oils, Volatile/chemistry , Plant Extracts/chemistry , Aedes/drug effects , Rhipicephalus/drug effects , Acaricides , Insecticides/chemistry , Larva , Gas Chromatography-Mass Spectrometry
8.
Molecules ; 26(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34443500

ABSTRACT

Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.


Subject(s)
Artemisia/chemistry , Dinoprostone/metabolism , Pyrethrins/pharmacology , Rhipicephalus/drug effects , Terpenes/isolation & purification , Terpenes/pharmacology , Animals , Antibodies/metabolism , Female , Gas Chromatography-Mass Spectrometry , Hemolymph/metabolism , Immersion , Ovary/drug effects , Ovary/enzymology , Peroxidase/metabolism , Prostaglandin-E Synthases/metabolism , Vitellogenins/metabolism
9.
Vet Parasitol ; 296: 109508, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34218174

ABSTRACT

The objective of the study was to evaluate the acaricidal activity of Citrus limetta seed oil (CLO) for controlling the cattle tick Rhipicephalus microplus. C. limetta seeds were collected as a waste product from different juice corners. CLO was obtained after extraction of seeds on soxhlet apparatus using n-hexane as solvent. It was characterized through Gas Chromatography-High Resolution Mass Spectroscopy (GC-HRMS) to determine the presence of active constituents. In vitro bioassays were performed using adult immersion test (AIT) and larval packet test (LPT). In vivo acaricidal efficacy of CLO was performed on red Sahiwal calves using ear bag method. Clinical safety of CLO was evaluated by observing haematological parameters and skin irritancy assay. Results of GC-HRMS showed that mainly fatty acids such as linoleic acid, stearic acid, oleic acid, palmitic acid, and linolenic acid were present in the CLO. CLO in the concentration of 125 mg/mL (CLO8) exhibited 100 % mortality in both AIT and LPT. CLO significantly (p < 0.001) reduced the number of ticks from 35 to 5.05 and 3.24 on 144 h after treatment with CLO7 and CLO8, respectively. CLO was found clinically safe without producing erythema and edema on skin. Haematological parameters such as haemoglobin (11.48 g/100 mL), total leucocytes count (4.32 106/cumm), total erythrocytes count (6.80 106/cumm), and packed cell volume (34.39 %) were normal and controlled. CLO may be used as effective and safe drug therapy for controlling R. microplus ticks.


Subject(s)
Cattle Diseases , Citrus , Plant Oils , Rhipicephalus , Tick Infestations , Acaricides/chemistry , Acaricides/pharmacology , Acaricides/therapeutic use , Animals , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/prevention & control , Citrus/chemistry , Larva , Plant Oils/pharmacology , Plant Oils/therapeutic use , Rhipicephalus/drug effects , Seeds/chemistry , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Tick Infestations/veterinary
10.
Ticks Tick Borne Dis ; 12(5): 101757, 2021 09.
Article in English | MEDLINE | ID: mdl-34147920

ABSTRACT

The prevention of tick-borne diseases is a major challenge for livestock production globally. Tick control strategies include the use of acaricides, but the prescribed strategies do not achieve the desired results in several countries, including Kenya. To better understand how tick treatment practices, contribute to reported tick treatment failures, we assessed livestock owners' acaricide procurement, level of knowledge about acaricides and tick resistance, and how they apply acaricides. We also assessed the quality of the commonly available acaricides. We focused on three livestock systems in Laikipia County, Kenya: two private ranches; one community ranch whose members communally graze their cattle and acquire and apply acaricides; and individual livestock owners in two pastoral communities who individually graze their cattle and acquire and apply acaricides. Through interviews and focus group discussions we assessed; access to acaricides, livestock owners' knowledge, and acaricide use practices; interview data were triangulated with participant observations (n = 107). We analysed nine commonly used acaricides to determine the active ingredient concentration and we determined the concentration of active ingredients in acaricide dilutions collected on farms. All livestock owners had access to and used chemical acaricides for tick control, predominantly amitraz-based. Private ranchers bought one amitraz-based acaricide in bulk directly from the manufacturer, while all other livestock owners bought from agrovet shops. The livestock owners acquired knowledge about acaricides from their own experiences and through experience-based recommendations from peers, but not from the technical information provided by the manufacturers and agrovet shops. All pastoral livestock frequently changed acaricide brand and active ingredient class. A large majority of pastoralists (86%) mixed acaricide brands within and across active ingredient classes; a smaller majority (56%) mixed acaricides with crop pesticides and insecticides. Our lab tests confirmed the content description on the labels bought from agrovet shops. However, on-farm acaricide dilutions from all three livestock systems deviated from the level recommended for effective treatment. If too diluted, the acaricide does not kill ticks, promoting resistance development. If too concentrated, this increases environmental contamination and raises public health concerns. Livestock owners lack a technical understanding of the functioning of acaricides, compromising their use and effectiveness. The widely adopted mixing of acaricides with insecticides and pesticides raises serious health concerns.


Subject(s)
Acaricides , Farms , Tick Control/methods , Acaricides/adverse effects , Acaricides/pharmacology , Animals , Cattle , Cattle Diseases/prevention & control , Environmental Pollution , Farmers , Humans , Insecticide Resistance , Insecticides/adverse effects , Insecticides/pharmacology , Ixodidae/drug effects , Kenya , Public Health , Pyrethrins/pharmacology , Rhipicephalus/drug effects , Surveys and Questionnaires , Tick Infestations/prevention & control , Tick Infestations/veterinary , Toluidines/pharmacology
11.
Ticks Tick Borne Dis ; 12(5): 101764, 2021 09.
Article in English | MEDLINE | ID: mdl-34139543

ABSTRACT

Amitraz is one of the most used acaricides for the control of ticks of domestic animals, however, extensive use of this active ingredient has favored the development of resistant populations of Rhipicephalus microplus worldwide. The possible mechanisms of metabolic and/or target-site alterations mechanisms of amitraz resistance were investigated in a Brazilian field population of R. microplus (São Gabriel strain). Bioassays with the synergists piperonylbutoxide, triphenylphosphate and diethyl-maleate were used to evaluate the metabolic mechanisms involved. Target-site insensitivity was investigated by amplification and sequencing of a fragment of the octopamine/tyramine (OCT/TYR) receptor gene. Piperonylbutoxide synergism (synergism ratio = 2.8) indicated the participation of the P450 pathway in the detoxification of amitraz. Previously reported single nucleotide polymorphisms that confer amino acid changes in the OCT/TYR receptor, threonine to proline (T8P) and leucine to serine (L22S), were found in the amitraz-resistant strain but not in the susceptible reference strain. The results suggest that amitraz resistance in the studied strain is multi-factorial and may result from cytochrome P450 detoxification and mutations in octopamine receptors.


Subject(s)
Acaricides/pharmacology , Drug Resistance , Rhipicephalus/drug effects , Toluidines/pharmacology , Animals , Brazil , Female
12.
Ticks Tick Borne Dis ; 12(5): 101747, 2021 09.
Article in English | MEDLINE | ID: mdl-34102575

ABSTRACT

The resistance of Rhipicephalus microplus to acaricides is a serious control problem, so its early diagnosis by a molecular technique is important. This study aims to develop a multiplex allele-specific polymerase chain reaction (PCR) for single-nucleotide polymorphisms (SNPs) in the para-sodium channel gene and in the GABA-Cl gene, associated with pyrethroids (cypermethrin and flumethrin) and fipronil resistance, respectively. We used 22 tick field isolates from farms with tick control problems (sampling convenience). These farms are located in departments of northern Uruguay. Three mutations in the sodium channel gene (Domain II S4-5: C190A and G215T; domain III S6: T2134A) and one in the GABA-Cl gene (A286S/L: CG856CC/TG) were studied. Mutations G215T and T213A were not detected. In all field isolates, the resistant allele (R) for C190A mutation (knockdown resistance, kdr) was detected, mainly in heterozygous individuals (SR) (11.1% to 86.7%). The highest incidence of the kdr mutant allele occurred in the Tacuarembó tick field isolates, where on 7 out of 10 farms >30% of individuals were SR and on one farm > 30% of individuals were RR. The next highest was Artigas (half of farms had>30% SR individuals and a quarter had >30% RR individuals). The resistance to dieldrin locus (rdl) mutation (CG856CC/TG) was absent in five field isolates. The highest incidenceof the mutant allele was observed in ticks from farms in Rivera (all farms had SR in >30% of individuals and two farms had RR in >12.5 and >16.7% of individuals) followed by farms in Tacuarembó (3 of 10 farms had >30% SR and 2 with >30% RR). Less than half of the farms had rdl in homozygous individuals. No significant association was observed between phenotypic bioassays and the rdl resistance allele. Several field isolates were phenotypically susceptible to the presence of the rdl allele. Several causes are possible (bioassay sensitivity, discriminating concentration). Individuals with simultaneous kdr and rdl mutations were present in 17 field isolates, and their frequency varied between 0.06% and 60%. Genotypic analysis shows that tick resistance to both acaricides, especially pyrethroids, is a serious problem. It is important to monitor the resistance using molecular techniques to plan efficient control measures. This is the first report describing kdr and rdl detection in R. microplus in Uruguay.


Subject(s)
Insecticide Resistance/genetics , Rhipicephalus/genetics , Sodium Channels/genetics , gamma-Aminobutyric Acid/genetics , Acaricides/pharmacology , Animals , Mutation , Pathology, Molecular/methods , Polymorphism, Single Nucleotide , Pyrazoles/pharmacology , Pyrethrins/pharmacology , Rhipicephalus/drug effects , Tick Infestations/epidemiology , Uruguay/epidemiology
13.
Open Vet J ; 11(1): 154-159, 2021.
Article in English | MEDLINE | ID: mdl-33898297

ABSTRACT

Background: Novel combinations of ivermectin (IVM) and fluazuron (FLU) are presented as an alternative for the control of ticks in cattle. Applying a combination of drugs with the aim to affect different stages of the parasite's life cycle is established as a potential measure to achieve the control of ticks in cattle. Aim: To determine the therapeutic equivalence between two novel formulations of IVM 1% combined with FLU 12.5% tested on bovines naturally infested with Rhipicephalus (Boophilus) microplus. Methods: Forty adult beef cattle were randomized into four groups (n = 10): IVM [1% (0.2 mg/kg)], combinations groups A and B [IVM 1% (0.2 mg/kg) + FLU 12.5% (2.5 mg/kg), each], and control [untreated]). On days 14, 27, and 49 after administration, the presence of ticks was ranked as null, low, medium, and high; a cumulative link model was adjusted to evaluate treatment response. Results: Although all groups had some animals with the presence of ticks until day 27, on day 14 IVM [odds ratios (OR) 0.013, CI95%: 0.001-0.014, p < 0.01], A (OR 0.01, CI95%: 0.00-0.07, p < 0.01) and B (OR 0.01, CI95%: 0.00-0.148, p < 0.01) groups were different when compared to the control group, unlike on day 27 where only groups A (OR 0.02, CI95%: 0.00-0.17, p < 0.01) and B (OR 0.06, CI95%: 0.00-0.46, p < 0.01) remained different from the control group. On day 49 post-administration, IVM and B did not differ from the control group, with 0.95 probability (CI95% 0.92-1.02) of high parasite burden. At day 49 post-administration, group A was the only group free of ticks (OR 0.01, CI95%: 0.00-0.13, p < 0.01). Conclusions: Pharmacotechnical differences in combined formulations should be considered in therapeutic equivalence studies.


Subject(s)
Acaricides/therapeutic use , Cattle Diseases/prevention & control , Ivermectin/therapeutic use , Phenylurea Compounds/therapeutic use , Rhipicephalus/drug effects , Tick Infestations/veterinary , Animals , Cattle , Cattle Diseases/parasitology , Drug Compounding/veterinary , Tick Infestations/parasitology , Tick Infestations/prevention & control
14.
Vet Parasitol Reg Stud Reports ; 23: 100523, 2021 01.
Article in English | MEDLINE | ID: mdl-33678378

ABSTRACT

The cattle tick Rhipicephalus microplus is a significant problem for livestock, causing losses of billions of dollars per year. This work aimed to determine the chemical composition of essential oils obtained from Laurus nobilis and Copaifera officinalis and evaluate activity against engorged R. microplus females. Chemical composition analyzed by GC-MS revealed the presence of 39 components accounting for 95.38% of the oil in L. nobilis, the most abundant being 1,8-cineol (25.7%), trans-sabinene-hydrate (20.8%), and α-terpinil acetate (15.0%). Chemical analysis of C. officinalis oil identified 25 components corresponding to 80.5% of the total constituents, where the major compounds were ß-caryophyllene (21.1%), caryophyllene oxide (10.7%), and α-trans-bergamotene (9.3%). Adult immersion test (AIT) showed that L. nobilis essential oil at 5% or 10% caused 80.5% mortality of engorged females after 24 h and reached 96.9% and 100% mortality on the third day after treatment, respectively. While the essential oil from C. officinalis caused 84.7% mortality after six days at 10% and at 5%, achieved approximately 100% mortality rate at the end of the experiment (day 15). Both essential oils and the combination significantly inhibited egg-laying; however, the combination treatment showed higher effectiveness than the isolated oils at 2.5%. A possible synergic action of L. nobilis and C. officinalis against the cattle tick R. microplus is therefore suggested. The present work introduces a potential alternative for the development of a formulation environment-friendly (green pesticide) used to control cattle tick infestations.


Subject(s)
Acaricides , Oils, Volatile , Plant Oils , Rhipicephalus , Acaricides/pharmacology , Animals , Female , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Rhipicephalus/drug effects
15.
Vet Parasitol Reg Stud Reports ; 23: 100526, 2021 01.
Article in English | MEDLINE | ID: mdl-33678380

ABSTRACT

This study aimed to evaluate the combination effect of Heterorhabditis bacteriophora HP88 and H. indica LPP1, with the acaricides deltamethrin, amitraz and chlorfenvinphos, and the essential oil (EO) of Lippia triplinervis, against engorged females of Rhipicephalus microplus. In order to verify the effect of acaricides and EO, the adult immersion test was used, and in the groups treated only with entomopathogenic nematodes (EPNs), 150 infective juveniles were used per female. In the treatments with nematodes in combination with the acaricides or EO, the females were immersed in the solutions (acaricide or EO) and then transferred to Petri dishes for application of the nematodes. The treatment with acaricides resulted in a control percentage lower than 70%, except in the group treated with chlorfenvinphos in the second experiment (84.3%). The control percentage was 73% for L. triplinervis EO, and greater than 90% in all the groups treated with nematodes. For treatments with EPNs combined with the acaricides or EO, the efficacy was greater than 95% (except for deltamethrin + HP88), and reached 100% in the treatment with LPP1 + amitraz. It can be concluded that the EPNs at the concentrations tested were compatible with the acaricides deltamethrin, amitraz and chlorfenvinphos, and with the EO of L. triplinervis. These combinations enhance the effect of these control agents.


Subject(s)
Acaricides , Lippia , Nematoda , Oils, Volatile , Rhipicephalus , Acaricides/pharmacology , Animals , Larva , Lippia/chemistry , Nematoda/pathogenicity , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Rhipicephalus/drug effects , Rhipicephalus/parasitology
16.
Vet Parasitol ; 292: 109397, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33691265

ABSTRACT

The resistance of Rhipicephalus microplus to pyrethroids is widely dispersed worldwide and has been associated with several nucleotide substitutions in its target site, the para-sodium ion channel (Na-channel) gene. The resistance of the tick to fipronil has been increasing in South America, and mutations in the GABA-gated chloride channel (GABA-Cl) have been described in fipronil-resistant tick strains. We developed a multiplex allele-specific PCR (mAS-PCR) to screen for single-nucleotide polymorphisms (SNPs) associated with the resistance to pyrethroids (knockdown resistance or kdr) and fipronil (resistance to dieldrin or rdl) in susceptible tick populations from Uruguay (n = 11) and the Rio Grande do Sul state in Southern Brazil (n = 15). Toxicological in vitro assays with larvae and adults were used to confirm the resistance to cypermethrin, flumethrin, and fipronil. Three SNPs in the Na-channel gene were investigated (C190A, G215 T, and T2134A), and the mAS-PCR included the detection of an SNP (G858 T) coding a non-synonymous mutation in the GABA-Cl gene. C190A was present in all pyrethroid-resistant populations from Uruguay and Brazil, most frequently homozygous. The SNPs G215 T and T2134A were not found. Of the seventeen fipronil-resistant populations, fourteen presented at least one mutant GABA-Cl gene allele, more frequently in heterozygosis. Other mechanisms apart from target site insensitivity may be involved in fipronil resistance since in some resistant populations, the SNP G858 T was not detected. Sixteen (61,5%) of the populations presented individuals with simultaneous mutations in the Na-channel and GABA-Cl genes. This could be a significant problem for the future control of R. microplus. This study shows the wide dispersion of a pyrethroid resistance-associated SNP in high frequency in the region. Fipronil resistance mutations are also dispersed across the region and increasing.


Subject(s)
Acaricides/pharmacology , Insecticide Resistance/genetics , Polymerase Chain Reaction/methods , Rhipicephalus/drug effects , Rhipicephalus/genetics , Alleles , Animals , Genotype , Larva/drug effects , Larva/genetics
17.
Rev Bras Parasitol Vet ; 30(1): e025220, 2021.
Article in English | MEDLINE | ID: mdl-33605390

ABSTRACT

Southern cattle tick resistance to pour-on and injectable acaricides has yet to be evaluated on a broader scope, and the paucity of information on the subject may hinder efforts to control this parasite. The objective of this study was to evaluate the resistance profile of ten populations of Rhipicephalus microplus to the acaricides fluazuron, fipronil and ivermectin in cattle herds in Mato Grosso do Sul, Brazil. The larval immersion test (LIT) was used to evaluate susceptibility to ivermectin and fipronil and the adult immersion test (AIT) was performed to evaluate fluazuron. Samples were randomly obtained in ten farms, and in general, we found resistance in five samples to fluazuron and in four samples to ivermectin and fipronil. Six samples showed incipient resistance to ivermectin and fipronil. Five of the ten evaluated samples showed resistance and/or incipient resistance to all the active ingredients, and the other five to two active ingredients. Among the samples classified as resistant, the average resistance ratio for ivermectin was 2.75 and 3.26 for fipronil. These results demonstrate the advanced status of resistance to the most modern chemical groups for the control of R. microplus in the state of Mato Grosso do Sul.


Subject(s)
Acaricides , Cattle Diseases , Drug Resistance , Rhipicephalus , Tick Infestations , Acaricides/pharmacology , Animals , Brazil , Cattle , Cattle Diseases/parasitology , Ivermectin/pharmacology , Phenylurea Compounds/pharmacology , Pyrazoles/pharmacology , Rhipicephalus/drug effects , Tick Infestations/parasitology , Tick Infestations/veterinary
18.
Ticks Tick Borne Dis ; 12(2): 101643, 2021 03.
Article in English | MEDLINE | ID: mdl-33388555

ABSTRACT

Rhipicephalus microplus is responsible for high economic losses in livestock and its control has become difficult due to the establishment of tick populations resistant to commercial acaricides. This study aimed to evaluate the in vitro larvicidal effect of the alkaloids berberine and piperine, and also to investigate their inhibitory mechanisms against the acetylcholinesterase enzyme. The effects of the alkaloids on larvae were observed through the immersion test at the following concentrations: 1.5; 3; 6; 12; 16 and 24 mM. Berberine and piperine presented larvicidal activity greater than 95 %, not differing from 100 % for the positive fipronil control (p > 0.05). Of the two alkaloids, piperine had a lower effective concentration (EC), with an EC50 of 6.04 mM. The acetylcholinesterase enzyme used in the study was obtained from R. microplus larvae (RmAChE) and the anticholinesterase activity was determined spectrophotometrically. The highest anticholinesterase activity, measured as inhibition concentration (IC), was observed for berberine (IC50 = 88.13 µM), while piperine showed lower activity (IC50 > 200 µM). Docking studies in RmAChE, followed by 10 ns molecular dynamics simulation, suggest that berberine stabilizes the RmAChE at lower Root-Mean-Square Deviation (RMSD) than Apo protein. Few hydrogen-bond interactions between berberine and RmAChE residues were balanced by hydrophobic and π-type interactions. Berberine fills preferentially the peripheral anionic site (PAS), which correlates with its non-competitive mechanism. These results suggest that berberine and piperine alkaloids have an in vitro acaricidal action on R. microplus larvae, and the likely mechanism of action of berberine is related to RmAChE inhibition when accessing the PAS residues. These findings could help the study of new natural products that could inhibit RmAChE and aid in the development of new acaricides.


Subject(s)
Acaricides/pharmacology , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Berberine Alkaloids/pharmacology , Piperidines/pharmacology , Plant Extracts/pharmacology , Polyunsaturated Alkamides/pharmacology , Rhipicephalus/drug effects , Tick Control , Animals , Cholinesterase Inhibitors/pharmacology , Computer Simulation , Larva/drug effects , Larva/growth & development , Rhipicephalus/growth & development
19.
Parasitol Res ; 120(3): 1103-1108, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33491114

ABSTRACT

Amitraz is an acaricide that is widely used in veterinary medicine to control the cattle tick Rhipicephalus microplus. However, controversy exists in the literature regarding the resistance of R. microplus to this product. The present work provides an update on the acaricidal efficacy of amitraz (Triatox®, 12.5 % amitraz) after 15 years without its use on a property. Two in vivo (bovines treated with amitraz and submitted to tick counts, n = 20 animals) and one in vitro (adult immersion test, n = 40 ticks) assays were performed to determine product efficacy. The efficacy of the commercial formulation tested in the first in vivo trial ranged from 14.1 to 47.0%, and in the second from 3.6 to 35.1%, for the 28 days of the experiments. Efficacy for the in vitro trial was 47.38%. The dose recommended by the manufacturer of the product did not cause mortality to most of the ticks of this strain, and efficacy/resistance was not reverted or modified after 15 years (estimated 60 tick generations).


Subject(s)
Acaricides/pharmacology , Cattle Diseases/drug therapy , Rhipicephalus/drug effects , Tick Infestations/veterinary , Toluidines/pharmacology , Acaricides/therapeutic use , Animals , Cattle , Cattle Diseases/parasitology , Female , Larva/drug effects , Male , Rhipicephalus/growth & development , Tick Infestations/drug therapy , Tick Infestations/parasitology , Toluidines/therapeutic use
20.
Ticks Tick Borne Dis ; 12(3): 101655, 2021 05.
Article in English | MEDLINE | ID: mdl-33503550

ABSTRACT

Animal production has a key role in global economic development and food security. Ticks, specifically Rhipicephalus microplus cause substantial economic and health impacts on more than eighty percent of the world cattle population. Though synthetic acaricides play a major role in tick management, their injudicious usage has caused environmental pollution and also promote the establishment of multi-acaricide resistant tick populations which is a matter of great concern. To provide an effective tool for controlling these resistant ticks, the present work was aimed to develop safe and inexpensive antitick natural formulations. Our bioprospection studies of Ageratum conyzoides plant established it as a species potentially having strong acaricidal activity due to the presence of potent acaricidal phyto-chemicals. To develop a suitable antitick natural formulation, 41 samples/fractions/formulations were prepared from the dry powder of the whole aerial part of the A. conyzoides plant using different techniques and delivery matrices. The strongest antitick effect was recorded for formulation ACF6, which demonstrated 87 ± 6% mean mortality with 57 % inhibition of oviposition in treated female ticks. Ticks treated with the ACF6 formulation showed a significant (p < 0.001) reduction in cuticular protein (1.238 ± 0.01 mg/mL) as compared to control ticks (2.928 ± 0.01 mg/mL) but no significant difference in chitin content of treated ticks and control ticks was observed. The formulation was found safe in a rat model as no significant differences in biochemical and haematological parameters among treated and control rats were noted. Histopathological studies indicated no sign of hepatocellular necrosis and no significant changes in the weights of liver and spleen was recorded. The overall in vivo efficacy of the formulation was 85 % for experimentally infested cattle with direct mortality of more than 80 % within 96 h post-application. The lethal effect of the formulation was in the form of drying and dead ticks 1-2 d after application. The developed formulation has the potential to be adopted as an alternative tick control measure in an ecofriendly manner.


Subject(s)
Acaricides , Ageratum/chemistry , Cattle Diseases/prevention & control , Drug Resistance , Plant Extracts , Rhipicephalus , Tick Control , Tick Infestations/veterinary , Animals , Cattle , Cattle Diseases/parasitology , Female , Larva/drug effects , Larva/growth & development , Male , Rhipicephalus/drug effects , Rhipicephalus/growth & development , Tick Infestations/parasitology , Tick Infestations/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...