Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Protist ; 170(2): 187-208, 2019 04.
Article in English | MEDLINE | ID: mdl-31055251

ABSTRACT

Nassellaria are marine protists belonging to the Radiolaria lineage (Rhizaria). Their skeleton, made of opaline silica, exhibit an excellent fossil record, extremely valuable in micro-paleontological studies for paleo-environmental reconstruction. Yet, to date very little is known about the extant diversity and ecology of Nassellaria in contemporary oceans, and most of it is inferred from their fossil record. Here we present an integrative classification of Nassellaria based on taxonomical marker genes (18S and 28S ribosomal DNA) and morphological characteristics obtained by optical and scanning electron microscopy imaging. Our phylogenetic analyses distinguished 11 main morpho-molecular clades relying essentially on the overall morphology of the skeleton and not on internal structures as previously considered. Using fossil calibrated molecular clock we estimated the origin of Nassellaria among radiolarians primitive forms in the Devonian (ca. 420 Ma), that gave rise to living nassellarian groups in the Triassic (ca. 250 Ma), during the biggest diversification event over their evolutionary history. This morpho-molecular framework provides both a new morphological classification easier to identify under light microscopy and the basis for future molecular ecology surveys. Altogether, it brings a new standpoint to improve our scarce understanding of the ecology and worldwide distribution of extant nassellarians.


Subject(s)
Phylogeny , Rhizaria/classification , DNA, Ribosomal/genetics , Microscopy, Electron, Scanning , Rhizaria/cytology , Rhizaria/genetics , Rhizaria/ultrastructure , Time
2.
J Eukaryot Microbiol ; 65(6): 828-842, 2018 11.
Article in English | MEDLINE | ID: mdl-29658156

ABSTRACT

Rhizarian 'Novel Clade 10' (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage-specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier-branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized 'Novel Clade 12', which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria.


Subject(s)
Phylogeny , Rhizaria/classification , Rhizaria/genetics , Basal Bodies/ultrastructure , Biological Evolution , Cercozoa/classification , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Eukaryota/classification , Eukaryota/genetics , Flagella/ultrastructure , Fresh Water/parasitology , Geologic Sediments , Plankton , RNA, Ribosomal, 18S/genetics , Rhizaria/cytology , Rhizaria/isolation & purification , Sequence Analysis, DNA
3.
Eur J Protistol ; 61(Pt A): 76-84, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28992521

ABSTRACT

The genus Euglypha contains the largest number of filose testate amoeba taxa which were mainly described based on the morphological characteristics of shells. Despite the increasing amount of molecular data, the phylogenetic relationships within the genus Euglypha remain unresolved. In this work we provide new data on SSU rRNA gene sequences, light and electron microscopy for the two euglyphid species Euglypha bryophilaBrown, 1911 and Euglypha cristataLeidy, 1874. Both species are characterised by the presence of a turf of spines on the aboral pole of the shells but differ in shell cross sections (elliptical and circular, respectively). A newly revealed feature of E. bryophila is a three-lobed thickening at the anterior margin and an elongated lobe at the posterior margin of apertural plates. The phylogenetic analysis shows that the species group together with the previously sequenced taxa of the genus Euglypha according to the shell cross-section. The subdivision of the genus based on the shell symmetry may reflect evolutionary trends to complication of the shell from radial to biradial symmetry. We also suggest that the shape of the anterior thickening of apertural plates and the lobe at the posterior margin can be used to distinguish Euglypha at the species level.


Subject(s)
Phylogeny , Rhizaria/classification , DNA, Protozoan/genetics , Rhizaria/cytology , Rhizaria/genetics , Rhizaria/ultrastructure , Species Specificity
4.
Eur J Protistol ; 54: 19-32, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27023270

ABSTRACT

We observed reproductive swarmer cells of the nassellarian and spumellarian polycystine radiolarians Didymocyrtis ceratospyris, Pterocanium praetextum, Tetrapyle sp., and Triastrum aurivillii using light, scanning and transmission electron microscopy. The swarmer cells had subspherical to ovoid or spindle shapes with two unequal flagella tapered to whip-like ends. The cell size was approximately 2.5-5.5µm long and 1.6-2.2µm wide, which is significantly smaller than that of the collodarian (colonial or naked) polycystine radiolarians. Transmission electron microscopy revealed that the swarmer cells possessed a nucleus, mitochondria with tubular cristae, Golgi body, and small lipid droplets in the cytoplasm; they also had a large vacuole in which a single crystalline inclusion (approx. 1.0-1.5µm) that was probably celestite (SrSO4) was enclosed. The swarmer cells were released directly from the parent cells. At that time, morphological change such as encystment was not observed in the parent cells, and the axopodia remained extended in a period of swarmer reproduction for floating existence. This may have prevented the polycystine swarmers from rapidly sinking down to great depths. Thus, we concluded that the polycystine radiolarians release the swarmer cells into the photic layer in the same way as the symbiotic acantharians.


Subject(s)
Microscopy, Electron , Rhizaria/ultrastructure , Life Cycle Stages , Organelles/ultrastructure , Reproduction , Rhizaria/cytology , Rhizaria/growth & development , Species Specificity
5.
Mol Phylogenet Evol ; 78: 215-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24862224

ABSTRACT

Phylogeography of unicellular plankton, as representative pelagic organisms, is fundamental to understanding their evolution in the ocean. Historically, these microplankton were believed to have cosmopolitan distributions achieved through passive transport and little potential for speciation because of a lack of geographic barriers in the oceans. Recent phylogeographic studies of these microplankton, however, have often revealed high diversity and fine-scale geographic distributions. These apparent contradictions may result from poor knowledge of the spatial distributions of pelagic microplankton in the water column. More information about both geographic and vertical distributions of pelagic populations could reveal the dispersal pathways, gene flow, and resulting diversifications in the open ocean. Here we demonstrate that two genetic types of the radiolarian morphospecies Spongotrochus glacialis with morphological differences are vertically segregated into the upper and lower surface waters within the pycnocline of the North Pacific Subtropical Water. This vertically separated distribution of two sister species is associated with distinct ecological partitioning. These two species could survive on different food resources from their respective environments: one in oligotrophic surface waters by using nutrients from symbionts, and the other at greater depths by depending on both heterotrophic and symbiotic nutrition. Moreover, molecular divergence-time estimates suggest that the two species diverged during the period of oligotrophic surface-water development in the Pacific Ocean. Our findings suggest that genetic isolation in the vertical dimension occurs through ecological partitioning even in the absence of physical barriers in the pelagic oceans.


Subject(s)
Plankton/classification , Rhizaria/classification , Ecological and Environmental Phenomena , Environment , Gene Flow , Genetic Variation , Oceans and Seas , Phylogeny , Phylogeography , Plankton/cytology , Plankton/genetics , Reproductive Isolation , Rhizaria/cytology , Rhizaria/genetics
6.
Curr Biol ; 24(1): 11-18, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24332546

ABSTRACT

BACKGROUND: Rhizaria are a major branch of eukaryote evolution with an extensive microfossil record, but only scarce molecular data are available. The rhizarian species Reticulomyxa filosa, belonging to the Foraminifera, is free-living in freshwater environments. In culture, it thrives only as a plasmodium with thousands of haploid nuclei in one cell. The R. filosa genome is the first foraminiferal genome to be deciphered. RESULTS: The genome is extremely repetitive, and the large amounts of identical sequences hint at frequent amplifications and homologous recombination events. Presumably, these mechanisms are employed to provide more gene copies for higher transcriptional activity and to build up a reservoir of gene diversification in certain gene families, such as the kinesin family. The gene repertoire indicates that it is able to switch to a single-celled, flagellated sexual state never observed in culture. Comparison to another rhizarian, the chlorarachniophyte alga Bigelowiella natans, reveals that proteins involved in signaling were likely drivers in establishing the Rhizaria lineage. Compared to some other protists, horizontal gene transfer is limited, but we found evidence of bacterial-to-eukaryote and eukaryote-to-eukaryote transfer events. CONCLUSIONS: The R. filosa genome exhibits a unique architecture with extensive repeat homogenization and gene amplification, which highlights its potential for diverse life-cycle stages. The ability of R. filosa to rapidly transport matter from the pseudopodia to the cell body may be supported by the high diversification of actin and kinesin gene family members.


Subject(s)
Genome, Protozoan , Rhizaria/genetics , Cytoskeleton/genetics , Gene Transfer, Horizontal , Meiosis , Molecular Sequence Data , Rhizaria/cytology , Transcription Factors/genetics
7.
Curr Biol ; 22(12): 1123-7, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22608512

ABSTRACT

Multicellular forms of life have evolved many times, independently giving rise to a diversity of organisms such as animals, plants, and fungi that together comprise the visible biosphere. Yet multicellular life is far more widespread among eukaryotes than just these three lineages. A particularly common form of multicellularity is a social aggregative fruiting lifestyle whereby individual cells associate to form a "fungus-like" sorocarp. This complex developmental process that requires the interaction of thousands of cells working in concert was made famous by the "cellular slime mold"Dictyostelium discoideum, which became an important model organism. Although sorocarpic protistan lineages have been identified in five of the major eukaryote groups, the ubiquitous and globally distributed species Guttulinopsis vulgaris has eluded proper classification. Here we demonstrate, by phylogenomic analyses of a 159-protein data set, that G. vulgaris is a member of Rhizaria and is thus the first member of this eukaryote supergroup known to be capable of aggregative multicellularity.


Subject(s)
Adaptation, Biological/physiology , Biological Evolution , Phylogeny , Rhizaria/cytology , Rhizaria/genetics , Base Sequence , Bayes Theorem , DNA, Complementary/genetics , Genomics/methods , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Rhizaria/classification , Sequence Analysis, DNA
8.
PLoS One ; 6(8): e23526, 2011.
Article in English | MEDLINE | ID: mdl-21853146

ABSTRACT

Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis.


Subject(s)
Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Rhizaria/classification , Rhizaria/genetics , Base Sequence , Likelihood Functions , Rhizaria/cytology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...