Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731650

ABSTRACT

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Subject(s)
Metabolomics , Pinellia , Rhizome , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Pinellia/metabolism , Pinellia/chemistry , Rhizome/metabolism , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Mass Spectrometry/methods , Drug Contamination , Metabolome , Metabolic Networks and Pathways
2.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812229

ABSTRACT

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Subject(s)
Atractylodes , Lactones , Plant Leaves , Sesquiterpenes , Atractylodes/genetics , Atractylodes/chemistry , Atractylodes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/analysis , Lactones/metabolism , Lactones/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Furans/metabolism , Drugs, Chinese Herbal , Gene Expression Regulation, Plant , Rhizome/genetics , Rhizome/chemistry , Rhizome/metabolism , Sesquiterpenes, Eudesmane
3.
J Ethnopharmacol ; 328: 118103, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38527573

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY: The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS: Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1ß, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1ß, IL-6, and TNF-α. RESULTS: EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1ß, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1ß, and IL-6. CONCLUSIONS: H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.


Subject(s)
Camphanes , Oils, Volatile , Zingiberaceae , Animals , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Rhizome/metabolism , Oils, Volatile/adverse effects , Lipopolysaccharides/pharmacology , Xylenes , Anti-Inflammatory Agents/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , RAW 264.7 Cells , Edema/chemically induced , Edema/drug therapy , Phytochemicals/therapeutic use , Zingiberaceae/metabolism
4.
J Ethnopharmacol ; 325: 117866, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38350504

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo Royle is a medicinal plant mentioned as Traymana in Ayurveda. In the folklore, it is used to cure fever, stomach ache, skin diseases and liver disorders. However, limited reports are available on the therapeutic potential of Gentiana kurroo Royle against alcohol-induced liver damage. AIM OF THE STUDY: To assess the effectiveness of the hydroethanolic extract of Gentiana kurroo Royle rhizome (GKRE) against alcohol-induced liver injury and explore the mechanism of action. MATERIALS AND METHODS: GKRE was characterized using UHPLC-QTOF-MS/MS. The binding affinity of the identified compound was studied in silico. In vitro studies were performed in the Huh-7 cell line. An acute oral toxicity study (2 g/kg BW) of GKRE was done in rats following OECD 420 guidelines. In the efficacy study, rats were treated with 50% ethanol (5 mL/kg BW, orally) for 4 weeks, followed by a single intraperitoneal dose of CCl4 (30%; 1 mL/kg BW) to induce liver injury. After 4th week, the rats were treated with GKRE at 100, 200 and 400 mg/kg BW doses for the next fifteen days. The biochemical and antioxidant parameters were analyzed using commercial kits and a biochemistry analyzer. Histopathology, gene and protein expressions were studied using qRT PCR and western blotting. RESULTS: Thirteen compounds were detected in GKRE. Few compounds showed a strong interaction with the fibrotic and inflammatory proteins in silico. GKRE reduced (p < 0.05) the ethanol-induced ROS production and inflammation in Huh-7 cells. The acute oral toxicity study revealed no adverse effect of GKRE in rats at 2 g/kg BW. GKRE improved (p < 0.05) the body and liver weights in ethanol-treated rats. GKRE improved (p < 0.05) the mRNA levels of ADH, SREBP1c and mitochondrial biogenesis genes in the liver tissues. GKRE also improved (p < 0.05) the liver damage markers, lipid peroxidation and levels of antioxidant enzymes in the liver. A reduced severity (p < 0.05) of pathological changes, fibrotic tissue deposition and caspase 3/7 activity were observed in the liver tissues of GKRE-treated rats. Further, GKRE downregulated (p < 0.05) the expression of fibrotic (TGFß, αSMA and SMADs) and inflammatory markers (TNFα, IL6, IL1ß and NFκB) in the liver. CONCLUSION: GKRE showed efficacy against alcohol-induced liver damage by inhibiting oxidative stress, apoptosis, inflammation and fibrogenesis in the liver.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Gentiana , Liver Diseases, Alcoholic , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ethanol/toxicity , Gentiana/chemistry , Rhizome/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Tandem Mass Spectrometry , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Liver , Liver Diseases, Alcoholic/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism
5.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38307355

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Subject(s)
Alpinia , Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/toxicity , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rhizome/metabolism , Ulcer/drug therapy , Luteolin/pharmacology , Histamine/metabolism , Gastric Mucosa , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
6.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38345936

ABSTRACT

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Subject(s)
Oryza , Rhizome , Transcriptome , Rhizome/genetics , Rhizome/growth & development , Rhizome/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Genome, Plant/genetics
7.
Plant J ; 118(3): 682-695, 2024 May.
Article in English | MEDLINE | ID: mdl-38251816

ABSTRACT

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Subject(s)
Catechols , Fatty Alcohols , Genome, Plant , Zingiber officinale , Zingiber officinale/genetics , Zingiber officinale/metabolism , Fatty Alcohols/metabolism , Catechols/metabolism , Genome, Plant/genetics , Evolution, Molecular , Retroelements/genetics , Haplotypes , Rhizome/genetics , Rhizome/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
8.
J Ethnopharmacol ; 323: 117642, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38151180

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla, as a traditional Chinese herbal medicine, was often used to relieve inflammation and pain. Rhizoma Paridis saponins (RPS) as the main active components of Paris polyphylla have excellent analgesic effects. AIM OF THE STUDY: Determine the analgesic material basis of RPS. MATERIALS AND METHODS: LC-MS/MS was used to analyze RPS, plasma after intravenous injection of RPS, and oral administration of RPS. H22 plantar pain model was established to explore the analgesic material basis of RPS. Moreover, correlation analysis, network pharmacology, RT-PCR and molecular docking were applied in this research. RESULTS: RPS had dose-dependently analgesic effects in acetic acid- and formalin-induced pain models. LC-MS/MS detection indicated that diosgenin as the metabolite of RPS mainly distributed in brain tissues. The addition of antibiotics increased the anti-tumor effect of RPS, but reduced its analgesic effect. Network pharmacology, RT-PCR and molecular docking showed that diosgenin exerted its analgesic effect through SRC and Rap1 signaling pathway. CONCLUSION: Diosgenin exhibited analgesic effects, while saponins had good anti-tumor effects in RPS. This discovery provided a better indication for the later application of RPS in anti-tumor and analgesic settings.


Subject(s)
Diosgenin , Liliaceae , Melanthiaceae , Neoplasms , Saponins , Saponins/pharmacology , Saponins/therapeutic use , Saponins/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Rhizome/metabolism , Neoplasms/drug therapy , Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use
9.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834245

ABSTRACT

Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 µM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia.


Subject(s)
Sarcopenia , Tracheophyta , Rhizome/metabolism , Sarcopenia/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Plant Extracts/chemistry , Dexamethasone/therapeutic use , Muscle, Skeletal/metabolism
10.
J Trace Elem Med Biol ; 80: 127306, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757646

ABSTRACT

BACKGROUND: Alpinia officinarum is a member of the ginger family (Zingiberaceae), which is widely cultivated in Asia and traditionally used for its anti-inflammatory, antimicrobial, and antihyperlipidemic qualities. This study aimed to evaluate the effect of Alpinia officinarum rhizome extract (AORE) on cisplatin (CP)-induced hepatotoxicity in rats. METHODS: Forty-four male rats were divided into six groups including the control group, AORE control group, CP control group, and three groups of CP (7 mg/kg dose, on the 10th day) with AORE (at concentrations of 100, 200 and 400 mg/kg, daily for 14 days). After 14 days, the rats' livers were removed and their liver function was assessed using biochemical marker enzymes including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities and albumin, total protein, and total bilirubin (T. bilirubin). Oxidative stress was assessed by evaluating malondialdehyde concentration and hepatic superoxide dismutase activity, histopathological and immunohistochemical tests were also conducted. RESULTS: Results demonstrated that treatment with AORE reduced the toxicity in levels of the hepatic biomarkers in cp-induced groups. AORE treatment decreased oxidative stress and improved histopathological indexes. Furthermore, immunohistochemical (IHC) investigation showed the B-cell lymphoma 2 (Bcl-2) upsurging and p53 downregulating expression exhibiting the recovery following AORE administration. CONCLUSION: The founding suggested that AORE administration has positive biochemical, histopathological, and immunohistochemical impacts on the ameliorating of hepatotoxicity in CP-induced rats.


Subject(s)
Alpinia , Chemical and Drug Induced Liver Injury , Rats , Male , Animals , Cisplatin/pharmacology , Alpinia/metabolism , Rhizome/metabolism , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oxidative Stress , Bilirubin , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Aspartate Aminotransferases
11.
PLoS One ; 18(7): e0287969, 2023.
Article in English | MEDLINE | ID: mdl-37450442

ABSTRACT

The rhizome is an economically important part of ginger (Zingiber officinale Rosc.). However, the mechanism of ginger rhizome enlargement remains unclear. In this study, we performed an integrated analysis of the hormone content and transcriptome of ginger at three rhizome enlargement stages: initial enlargement (S1), middle enlargement (S2), and peak enlargement (S3). With rhizome enlargement, the levels of the hormones zeatin (ZT), gibberellic acid (GA), indole acetic acid (IAA), and jasmonic acid (JA) were significantly increased, and this increase was positively correlated with rhizome diameter. Transcriptomic analysis identified a large number of differentially expressed genes (DEGs); the number of DEGs were 2,206 in the transition from S1 to S2, and 1,151 in the transition from S2 to S3. The expression of several genes related to hormone biosynthesis and signalling and cell division or expansion, and transcription factors was significantly altered, which suggests that these genes play essential roles in rhizome enlargement. The results of correlation analysis suggested that the process of ginger rhizome enlargement may be primarily related to the regulation of endogenous cytokinin, GA3, auxin, and JA biosynthesis pathways and signal transduction; GRAS, HB, MYB, MYB122, bZIP60, ARF1, ARF2, E2FB1, and E2FB2, which may regulate the expression of rhizome formation-related genes; and CYC2, CDKB1, CDKB2, EXPA1, and XTH7, which may mediate cell division and expansion. These results provide gene resources and information that will be useful for the molecular breeding in ginger.


Subject(s)
Rhizome , Zingiber officinale , Rhizome/genetics , Rhizome/metabolism , Zingiber officinale/genetics , Gene Expression Profiling , Transcriptome , Hormones/metabolism
12.
J Nat Prod ; 86(5): 1230-1239, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37146221

ABSTRACT

Amethystoidesic acid (1), a triterpenoid with an unprecedented 5/6/6/6 tetracyclic skeleton, and six undescribed diterpenoids, amethystoidins A-F (2-7), were isolated from the rhizomes of Isodon amethystoides along with 31 known di- and triterpenoids (8-38). Their structures were fully elucidated via extensive spectroscopic analysis including 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Compound 1 is the first example of a triterpenoid possessing a rare ring system (5/6/6/6) derived from a contracted A-ring and the 18,19-seco-E-ring of ursolic acid. Compounds 6, 16, 21, 22, 24, and 27 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, which could be partly mediated by the downregulation of LPS-induced inducible nitric oxide synthase (iNOS) protein expression.


Subject(s)
Isodon , Triterpenes , Isodon/chemistry , Rhizome/metabolism , Triterpenes/pharmacology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Nitric Oxide , Molecular Structure
13.
BMC Plant Biol ; 23(1): 221, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101108

ABSTRACT

BACKGROUND: Rhizome is vital for carbon and nitrogen metabolism of the whole plant. However, the effect of carbon and nitrogen in the rhizome on rhizome expansion remains unclear. RESULTS: Three wild Kentucky bluegrass (Poa pratensis L.) germplasms with different rhizome expansion capacity (strong expansion capacity, 'YZ'; medium expansion capacity, 'WY'; and weak expansion capacity, 'AD') were planted in the field and the rhizomes number, tiller number, rhizome dry weight, physiological indicators and enzyme activity associated carbon and nitrogen metabolisms were measured. Liquid chromatography coupled to mass spectrometry (LC-MS) was utilized to analyze the metabolomic of the rhizomes. The results showed that the rhizome and tiller numbers of the YZ were 3.26 and 2.69-fold of that of the AD, respectively. The aboveground dry weight of the YZ was the greatest among all three germplasms. Contents of soluble sugar, starch, sucrose, NO3--N, and free amino acid were significantly higher in rhizomes of the YZ than those of the WY and AD (P < 0.05). The activities of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and sucrose phosphate synthase (SPS) of the YZ were the highest among all three germplasm, with values of 17.73 A·g- 1 h- 1, 5.96 µmol·g- 1 min- 1, and 11.35 mg·g- 1 h- 1, respectively. Metabolomics analyses revealed that a total of 28 differentially expressed metabolites (DEMs) were up-regulated, and 25 DEMs were down-regulated in both comparison groups (AD vs. YZ group and WY vs. YZ group). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that metabolites related to histidine metabolism, tyrosine metabolism, tryptophan metabolism, and phenylalanine metabolism were associated with rhizomes carbon and nitrogen metabolism. CONCLUSIONS: Overall, the results suggest that soluble sugar, starch, sucrose, NO3--N, and free amino acid in rhizome are important to and promote rhizome expansion in Kentucky bluegrass, while tryptamine, 3-methylhistidine, 3-indoleacetonitrile, indole, and histamine may be key metabolites in promoting carbon and nitrogen metabolism of rhizome.


Subject(s)
Poa , Rhizome , Rhizome/metabolism , Poa/metabolism , Carbon/metabolism , Kentucky , Nitrogen/metabolism , Sucrose/metabolism , Amino Acids/metabolism , Starch/metabolism
14.
Molecules ; 28(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049673

ABSTRACT

One new dibenzyltyrolactone lignan dysoslignan A (1), three new arylnaphthalide lignans dysoslignan B-C (2-4), along with fourteen known metabolites (5-18), were isolated from the roots and rhizomes of Dysosma versipellis. Their structures and stereochemistry were determined from analysis of NMR spectroscopic and circular dichroism (CD) data. Compound 2 represents the first report of naturally occurring arylnaphthalide lignan triglycoside. The cytotoxic activities of all isolated compounds were evaluated against A-549 and SMMC-7721 cell lines. Compounds 7-10 and 14-16 were more toxic than cisplatin in two tumor cell lines. This investigation clarifies the potential effective substance basis of D. versipellis in tumor treatment.


Subject(s)
Berberidaceae , Lignans , Plant Roots , Rhizome , A549 Cells , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Berberidaceae/chemistry , Berberidaceae/metabolism , Circular Dichroism , Cisplatin/adverse effects , Cisplatin/toxicity , Lignans/chemistry , Lignans/isolation & purification , Lignans/metabolism , Lignans/toxicity , Magnetic Resonance Spectroscopy , Neoplasms/drug therapy , Plant Roots/chemistry , Plant Roots/metabolism , Rhizome/chemistry , Rhizome/metabolism , Cell Line, Tumor
15.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903481

ABSTRACT

Polygonati Rhizoma is the dried rhizome of Polygonatum kingianum coll.et hemsl., Polygonatum sibiricum Red. or Polygonatum cyrtonema Hua, and has a long history of medication. Raw Polygonati Rhizoma (RPR) numbs the tongue and stings the throat, while prepared Polygonati Rhizoma (PPR) can remove the numbness of the tongue, and at the same time enhance its functions of invigorating the spleen, moistening the lungs and tonifying the kidneys. There are many active ingredients in Polygonati Rhizoma (PR), among which polysaccharide is one of the most important active ingredients. Therefore, we studied the effect of Polygonati Rhizoma polysaccharide (PRP) on the lifespan of Caenorhabditis elegans (C. elegans) and found that polysaccharide in PPR (PPRP) was more effective than Polysaccharide in RPR (RPRP) in prolonging the lifespan of C. elegans, reducing the accumulation of lipofuscin, and increasing the frequency of pharyngeal pumping and movement. The further mechanism study found that PRP can improve the anti-oxidative stress ability of C. elegans, reduce the accumulation of reactive oxygen species (ROS) in C. elegans, and improve the activity of antioxidant enzymes. The results of quantitative real-time PCR(q-PCR) experiments suggested that PRP may prolong the lifespan of C. elegans by down-regulating daf-2 and activating daf-16 and sod-3, and the transgenic nematode experiments were consistent with its results, so it was hypothesized that the mechanism of age delaying effect of PRP was related to daf-2, daf-16 and sod-3 of the insulin signaling pathway. In short, our research results provide a new idea for the application and development of PRP.


Subject(s)
Caenorhabditis elegans Proteins , Polygonatum , Animals , Caenorhabditis elegans , Longevity , Rhizome/metabolism , Reactive Oxygen Species/metabolism , Polysaccharides/pharmacology , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism
16.
J Environ Manage ; 332: 117340, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36716543

ABSTRACT

To identify key species associated with pyrene degradation in Vallisneria natans (V.natans) rhizosphere sediment, this work investigated the temporal and spatial changes in the rhizosphere microbial community and the relationship between the changes and the pyrene degradation process through a three-compartment rhizome-box experiment under pyrene stress. The degradation kinetics of pyrene showed that the order of degradation rate was rhizosphere > near-rhizosphere > non-rhizosphere. The difference in the pyrene degradation behavior in the sediments corresponded to the change in the proportions of dominant phyla (Firmicutes and Proteobacteria) and genera (g_Massilia f_Comamonadaceae, g_Sphingomonas). The symbiosis networks and hierarchical clustering analysis indicated that the more important phyla related to the pyrene degradation in the rhizosphere was Proteobacteria, while g_Sphigomonas, f_Comamonadaceae, and especially g_Massilia were the core genera. Among them, f_Comamonadaceae was the genus most affected by rhizosphere effects. These findings strengthened our understanding of the PAHs-degradation microorganisms in V.natans rhizosphere and are of great significance for enhancing phytoremediation on PAHs-contaminated sediment.


Subject(s)
Hydrocharitaceae , Microbiota , Polycyclic Aromatic Hydrocarbons , Rhizome/metabolism , Pyrenes/metabolism , Hydrocharitaceae/metabolism , Biodegradation, Environmental
17.
BMC Genomics ; 23(1): 753, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384450

ABSTRACT

BACKGROUND: Continuous tilling and the lateral growth of rhizomes confer rhizomatous grasses with the unique ability to laterally expand, migrate and resist disturbances. They play key roles especially in degraded grasslands, deserts, sand dunes, and other fragile ecological system. The rhizomatous plant Leymus secalinus has both rhizome buds and tiller buds that grow horizontally and upward at the ends of rhizome differentiation and elongation, respectively. The mechanisms of rhizome formation and differentiation in L. secalinus have not yet been clarified. RESULTS: In this study, we found that the content of gibberellin A3 (GA3) and indole-3-acetic acid (IAA) were significantly higher in upward rhizome tips than in horizontal rhizome tips; by contrast, the content of methyl jasmonate and brassinolide were significantly higher in horizontal rhizome tips than in upward rhizome tips. GA3 and IAA could stimulate the formation and turning of rhizomes. An auxin efflux carrier gene, LsPIN1, was identified from L. secalinus based on previous transcriptome data. The conserved domains of LsPIN1 and the relationship of LsPIN1 with PIN1 genes from other plants were analyzed. Subcellular localization analysis revealed that LsPIN1 was localized to the plasma membrane. The length of the primary roots (PRs) and the number of lateral roots (LRs) were higher in Arabidopsis thaliana plants overexpressing LsPIN1 than in wild-type (Col-0) plants. Auxin transport was altered and the gravitropic response and phototropic response were stronger in 35S:LsPIN1 transgenic plants compared with Col-0 plants. It also promoted auxin accumulation in root tips. CONCLUSION: Our findings indicated that LsPIN1 plays key roles in auxin transport and root development. Generally, our results provide new insights into the regulatory mechanisms underlying rhizome development in L. secalinus.


Subject(s)
Arabidopsis , Rhizome , Rhizome/metabolism , Indoleacetic Acids/metabolism , Poaceae/metabolism , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism
18.
J Ethnopharmacol ; 298: 115612, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35987409

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic dermatopathy is one of the most serious and common complications of diabetes. It has been found that high glucose can lead to abnormal glycometabolism. The skin microenvironment pollution caused by the increase in glucose and the oxidative stress mediated by the deposition of advanced glycation end products can lead to invisible skin injury, and the interaction between them is the key factor that makes the skin wounds of diabetic rats difficult to heal. Therefore, the main task of promoting healing is to reduce blood glucose levels and relieve the deposition of advanced glycation end products. Polygonatum kingianum Collett & Hemsl (PK) of Asparagaceae is planted in Yunnan, China, and is used by the Bai, Hani and Wa nationalities as a traditional medicine for preventing and treating diabetes. AIM OF THE STUDY: To study the effects of PK extract on skin wound healing in diabetic rats and to explore the regulatory mechanism of PK on wound microenvironment pollution, the antioxidative stress signaling pathway and latent injury of wound skin tissue. METHODS: First, wounds were prepared after diabetic rats were given PK extract by gavage for 4 weeks, and then gavage was continued for 2 weeks to observe and calculate the wound healing rate. A scanning electron microscope was used to observe the pathomorphological changes in the skin tissue at the edge of the wound. Western blotting was used to detect protein expression. Immunohistochemistry was used to detect the expression of CD34, AGEs, bFGF and VEGF. The Nrf2/HO-1 signaling pathway in skin tissue was detected by fluorescence quantitative PCR. Serum biochemical indicators and inflammatory cytokine levels were detected by a kit. RESULTS: After PK treatment, the wound healing rate increased significantly (P < 0.001), the infiltration of inflammatory cells in skin tissue of DM lesion rats decreased, the number of new blood vessels increased, and the epidermis and dermis thickened. The content of glucose, AGEs, RAGE protein and RAGE mRNA in skin decreased significantly (P < 0.05, P < 0.01, P < 0.001), while the expression of Nrf2 mRNA, HO-1 mRNA, CD34, bFGF and VEGF increased significantly (P < 0.05, P < 0.01, P < 0.001). The levels of SOD, GSH, MMP-9 and MMP-2 in skin decreased (P < 0.05, P < 0.01, P < 0.001), but the level of TIMP-2 increased (P < 0.001). GSP, GHb and ICAM-1 in plasma decreased (P < 0.05, P < 0.01, P < 0.001), while T-AOC, SOD and FINS increased (P < 0.05, P < 0.01). The levels of MDA, TNF-, IL-6, IL-2 and IFN-γ in plasma and wound skin tissue decreased (P < 0.05, P < 0.01, P < 0.001). CONCLUSION: PK can reduce the infiltration of inflammatory cells and glucose content in the skin tissue at the edge of the wound, reduce inflammatory factors in skin and plasma, and increase angiogenesis, thus improving the wound healing rate. PK can alleviate the microenvironment pollution caused by AGEs and glucose metabolism disorder in diabetic rats and induce antioxidant activity through the Nrf 2/HO-1 signaling pathway, thus reducing oxidative damage and offsetting endogenous skin damage and hidden damage.


Subject(s)
Diabetes Mellitus, Experimental , Polygonatum , Animals , China , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glucose/pharmacology , Glycation End Products, Advanced/metabolism , NF-E2-Related Factor 2 , Polygonatum/metabolism , RNA, Messenger , Rats , Rhizome/metabolism , Superoxide Dismutase , Vascular Endothelial Growth Factor A/genetics , Wound Healing
19.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012254

ABSTRACT

Curcuma comosa has been used in traditional Thai medicine to treat menstrual cycle-related symptoms in women. This study aims to evaluate the diarylheptanoid drug modulator, trans-1,7-diphenyl-5-hydroxy-1-heptene (DHH), in drug-resistant K562/ADR human leukemic cells. This compound was studied due to its effects on cell cytotoxicity, multidrug resistance (MDR) phenotype, P-glycoprotein (P-gp) expression, and P-gp function. We show that DHH itself is cytotoxic towards K562/ADR cells. However, DHH did not impact P-gp expression. The impact of DHH on the MDR phenotype in the K562/ADR cells was determined by co-treatment of cells with doxorubicin (Dox) and DHH using an MTT assay. The results showed that the DHH changed the MDR phenotype in the K562/ADR cells by decreasing the IC50 of Dox from 51.6 to 18.2 µM. Treating the cells with a nontoxic dose of DHH increased their sensitivity to Dox in P-gp expressing drug-resistant cells. The kinetics of P-gp mediated efflux of pirarubicin (THP) was used to monitor the P-gp function. DHH was shown to suppress THP efflux and resulted in enhanced apoptosis in the K562/ADR cells. These results demonstrate that DHH is a novel drug modulator of P-gp function and induces drug accumulation in the Dox-resistant K562 leukemic cell line.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents , Curcuma , Diarylheptanoids , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Biphenyl Compounds , Curcuma/chemistry , Diarylheptanoids/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Humans , K562 Cells , Rhizome/metabolism
20.
Biol Futur ; 73(3): 327-334, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35943700

ABSTRACT

In this study, silver nanoparticles were synthesized using Alpinia officinarum rhizome extract via an eco-friendly green synthesis method. The silver nanoparticles (AO-AgNPs) were characterized by UV-Vis spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dynamic light scattering. Further, the cytotoxic and apoptotic effects of AO-AgNPs were investigated in human cancer cells with different tissue origins via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometric analyses, respectively. The expression levels of anti-apoptotic Bcl-2 protein were evaluated via a real-time polymerase chain reaction. The synthesized AO-AgNPs induced a significant cytotoxic effect in all tested cancer cells but not in normal cells. AO-AgNPs induced the percentage of apoptotic cells and reduced the levels of anti-apoptotic Bcl-2 mRNA levels in cancer cells. These results demonstrate the potential application of AO-AgNPs in cancer treatment.


Subject(s)
Alpinia , Antineoplastic Agents , Metal Nanoparticles , Neoplasms , Alpinia/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Bromides/pharmacology , Humans , Metal Nanoparticles/therapeutic use , Plant Extracts/pharmacology , RNA, Messenger/pharmacology , Rhizome/metabolism , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...