Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.644
Filter
1.
Sci Rep ; 14(1): 10525, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720057

ABSTRACT

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Subject(s)
Arachis , Bacteria , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Arachis/microbiology , India , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Farms , Plant Roots/microbiology , Phylogeny , Metagenome , Biodiversity
2.
Sci Rep ; 14(1): 10231, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702407

ABSTRACT

Agricultural soils are increasingly undergoing inadvertent and purposeful exposures to engineered CeO2 nanoparticles (NPs), which can impact crops and root-associated microbial communities. However, interactions between NP concentration and exposure duration on plant-mediated responses of root-associated bacterial communities are not well understood. Soybeans seedlings were grown in soil with uncoated NPs added at concentrations of 0, 1 or 100 mg kg-1. Total soil exposure durations were either 190 days, starting 106 days before planting or 84 days with NP amendments coinciding with planting. We assessed plant development, bacterial diversity, differential abundance and inferred functional changes across rhizosphere, rhizoplane, and root tissue compartments. Plant non-monotonic dose responses were mirrored in bacterial communities. Most notably, effects were magnified in the rhizoplane under low-dose, short-exposures. Enriched metabolic pathways were primarily related to biosynthesis and degradation/utilization/assimilation, rather than responses to metals or oxidative stress. Our results indicate that plant-mediated bacterial responses were greater than direct NP impacts. Also, we identify needs for modeling non-monotonic legume stress responses that account for coinfection with mutualistic and parasitic bacteroids. Our findings provide new insights regarding effects of applications of soil amendments such as biosolids containing NPs or nano-enabled formulations used in cultivation of legumes and other crops.


Subject(s)
Bacteria , Cerium , Glycine max , Nanoparticles , Plant Roots , Rhizosphere , Soil Microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/microbiology , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Bacteria/drug effects , Microbiota/drug effects , Soil/chemistry
3.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806859

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Subject(s)
Actinobacteria , Camellia sinensis , Rhizosphere , Seeds , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Seeds/microbiology , Seeds/growth & development , Seeds/metabolism , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Camellia sinensis/genetics , Camellia sinensis/metabolism , India , Plant Roots/microbiology , Plant Roots/growth & development , Signal Transduction , RNA, Ribosomal, 16S/genetics , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Siderophores/metabolism
4.
BMC Plant Biol ; 24(1): 409, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760736

ABSTRACT

BACKGROUND: Bletilla striata (Thunb.) Reichb. f. (B. striata) is a perennial herbaceous plant in the Orchidaceae family known for its diverse pharmacological activities, such as promoting wound healing, hemostasis, anti-inflammatory effects, antioxidant properties, and immune regulation. Nevertheless, the microbe-plant-metabolite regulation patterns for B. striata remain largely undetermined, especially in the field of rhizosphere microbes. To elucidate the interrelationships between soil physics and chemistry and rhizosphere microbes and metabolites, a comprehensive approach combining metagenome analysis and targeted metabolomics was employed to investigate the rhizosphere soil and tubers from four provinces and eight production areas in China. RESULTS: Our study reveals that the core rhizosphere microbiome of B. striata is predominantly comprised of Paraburkholderia, Methylibium, Bradyrhizobium, Chitinophaga, and Mycobacterium. These microbial species are recognized as potentially beneficial for plants health. Comprehensive analysis revealed a significant association between the accumulation of metabolites, such as militarine and polysaccharides in B. striata and the composition of rhizosphere microbes at the genus level. Furthermore, we found that the soil environment indirectly influenced the metabolite profile of B. striata by affecting the composition of rhizosphere microbes. Notably, our research identifies soil organic carbon as a primary driving factor influencing metabolite accumulation in B. striata. CONCLUSION: Our fndings contribute to an enhanced understanding of the comprehensive regulatory mechanism involving microbe-plant-metabolite interactions. This research provides a theoretical basis for the cultivation of high-quality traditional Chinese medicine B. striata.


Subject(s)
Microbiota , Orchidaceae , Rhizosphere , Soil Microbiology , Orchidaceae/microbiology , Orchidaceae/metabolism , China , Plant Tubers/microbiology , Plant Tubers/metabolism
5.
Microb Ecol ; 87(1): 74, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771320

ABSTRACT

Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.


Subject(s)
Adaptation, Physiological , Bacteria , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Fungi/genetics , Fungi/classification , Fungi/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Ecosystem , Bacterial Physiological Phenomena
6.
Plant Physiol Biochem ; 211: 108701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723489

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a promising candidate for heavy metal remediation, primarily composed of carbon (C) and nitrogen (N). It has been demonstrated that g-C3N4 adjusts rhizosphere physicochemical conditions, especially N conditions, alleviating the absorption and accumulation of Cadmium (Cd) by soybeans. However, the mechanisms by which g-C3N4 induces N alterations to mitigates plant uptake of Cd remain unclear. This study investigated the impact of g-C3N4-mediated changes in N conditions on the accumulation of Cd by soybeans using pot experiments. It also explored the microbiological mechanisms underlying alterations in soybean rhizospheric N cycling induced by g-C3N4. It was found that g-C3N4 significantly increased N content in the soybean rhizosphere (p < 0.05), particularly in terms of available nitrogen (AN) of nitrate and ammonium. Plants absorbed more ammonium nitrogen (NH4⁺-N), the content of which in the roots showed a significant negative correlation with Cd concentration in plant (p < 0.05). Additionally, g-C3N4 significantly affected rhizospheric functional genes associated with N cycling (p < 0.05) by increasing the ratio of the N-fixation functional gene nifH and decreasing the ratios of functional genes amoA and nxrA involved in nitrification. This enhances soybean's N-fixing potential and suppresses denitrification potential in the rhizosphere, preserving NH4⁺-N. Niastella, Flavisolibacter, Opitutus and Pirellula may play a crucial role in the N fixation and preservation process. In summary, the utilization of g-C3N4 offers a novel approach to ensure safe crop production in Cd-contaminated soils. The results of this study provide valuable data and a theoretical foundation for the remediation of Cd polluted soils.


Subject(s)
Cadmium , Glycine max , Graphite , Nitrogen , Rhizosphere , Glycine max/metabolism , Glycine max/drug effects , Glycine max/microbiology , Cadmium/toxicity , Cadmium/metabolism , Nitrogen/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Nitrogen Compounds/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/microbiology
7.
Curr Microbiol ; 81(7): 188, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780806

ABSTRACT

The rhizosphere niche is extremely important for the overall growth and development of plants. Evidently, it is necessary to understand the complete mechanism of plant microbe interactions of the rhizosphere for sustainable and low input productivity. To meet the increasing global food demand, rice (Oryza sativa L.) agriculture seeks optimal conditions. The unique oxic-anoxic interface of rice-growing soil has invited divergent microbes with dynamic biogeochemical cycles. This review provides the systematic analysis of microbes associated with the major biogeochemical cycles with the aim to generate better management strategies of rhizospheric microbiome in the field of rice agriculture. For instance, several methanogenic and methanotrophic bacteria in the rice rhizosphere make an equilibrium for methane concentration in the environment. The carbon sequestration in paddy soil is again done through many rhizospheric microorganisms that can directly assimilate CO2 with their photoautotrophic mode of nutrition. Also the phosphate solubilizing microbes remain to be the most important keys for the PGPR activity of the paddy ecosystem. In addition, rhizospheric microbiome remain crucial in degradation and solubilization of organo-sulfur and insoluble inorganic sulfides which can be taken by the plants. Further, this review elucidates on the advantages of using metagenomic and metaproteomic approaches as an alternative of traditional approaches to understand the overall metabolic pathways operational in paddy-field. These knowledges are expected to open new possibilities for designing the balanced microbiome used as inoculum for intensive farming and will eventually lead to exert positive impacts on rice cultivation.


Subject(s)
Bacteria , Microbiota , Oryza , Rhizosphere , Soil Microbiology , Oryza/microbiology , Oryza/growth & development , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Agriculture/methods
8.
World J Microbiol Biotechnol ; 40(6): 188, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702590

ABSTRACT

Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.


Subject(s)
Bacteria , Methanol , Nitrogen , Oryza , Rhizosphere , Soil Microbiology , Nitrogen/metabolism , Methanol/metabolism , Oryza/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Phylogeny , Minerals/metabolism , Temperature , Carbon/metabolism
9.
Microbiome ; 12(1): 81, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715147

ABSTRACT

BACKGROUND: After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS: To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS: DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.


Subject(s)
DNA Transposable Elements , Microbiota , Rhizosphere , Plasmids/genetics , Plant Roots/microbiology , Proteobacteria/genetics , Flow Cytometry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Soil Microbiology
10.
Sci Total Environ ; 932: 172927, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719057

ABSTRACT

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.


Subject(s)
Arachis , Charcoal , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Charcoal/chemistry , Arachis/microbiology , Soil Pollutants/analysis , Soil/chemistry , Microbiota , Rhizosphere , Environmental Restoration and Remediation/methods
11.
Environ Int ; 187: 108732, 2024 May.
Article in English | MEDLINE | ID: mdl-38728817

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Subject(s)
Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
12.
BMC Plant Biol ; 24(1): 398, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745310

ABSTRACT

BACKGROUND: The pollution of soil by heavy metals, particularly Cd, is constitutes a critical international environmental concern. Willow species are renowned for their efficacy in the phytoremediation of heavy metals owing to their high Cd absorption rate and rapid growth. However, the mechanisms underlying microbial regulation for high- and low-accumulating willow species remain poorly understood. Therefore, we investigated the responses of soil and rhizosphere microbial communities to high- and low-Cd-accumulating willows and Cd contamination. We analyzed soil properties were analyzed in bulk soil (SM) and rhizosphere soil (RM) planted with high-accumulating (H) and low-accumulating (L) willow species. RESULTS: Rhizosphere soil for different willow species had more NH4+ than that of bulk soil, and RM-H soil had more than RM-L had. The available phosphorus content was greater in hyper-accumulated species than it was in lower-accumulated species, especially in RM-H. Genome sequencing of bacterial and fungal communities showed that RM-L exhibited the highest bacterial diversity, whereas RM-H displayed the greatest richness than the other groups. SM-L exhibited the highest diversity and richness of fungal communities. Ralstonia emerged as the predominant bacterium in RM-H, whereas Basidiomycota and Cercozoa were the most enriched fungi in SM-H. Annotation of the N and C metabolism pathways revealed differential patterns: expression levels of NRT2, NarB, nirA, nirD, nrfA, and nosZ were highest in RM-H, demonstrating the effects of NO3-and N on the high accumulation of Cd in RM-H. The annotated genes associated with C metabolism indicated a preference for the tricarboxylic pathway in RM-H, whereas the hydroxypropionate-hydroxybutyrate cycle was implicated in C sequestration in SM-L. CONCLUSIONS: These contribute to elucidation of the mechanism underlying high Cd accumulation in willows, particularly in respect of the roles of microbes and N and C utilization. This will provide valuable insights for repairing polluted soil using N and employing organic acids to improve heavy metal remediation efficiency.


Subject(s)
Biodegradation, Environmental , Cadmium , Microbiota , Rhizosphere , Salix , Soil Microbiology , Soil Pollutants , Salix/microbiology , Salix/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism , Fungi/genetics , Soil/chemistry
13.
PLoS One ; 19(5): e0302462, 2024.
Article in English | MEDLINE | ID: mdl-38753836

ABSTRACT

Fruit shape is an important character of watermelon. And the compositions of rhizospheric and endophytic microorganisms of watermelon with different fruit shape also remains unclear. To elucidate the biological mechanism of watermelon fruit shape formations, the rhizospheric and endophytic microbial community compositions between oval (OW) and circular watermelons (CW) were analyzed. The results showed that except of the rhizospheric bacterial richness (P < 0.05), the rhizospheric and endophytic microbial (bacterial and fungal) diversity were not statistically significant between OW and CW (P > 0.05). However, the endophytic microbial (bacterial and fungal) compositions were significantly different. Firstly, Bacillus, Rhodanobacter, Cupriavidus, Luteimonas, and Devosia were the unique soil dominant bacterial genera in rhizospheres of circular watermelon (CW); In contrast, Nocardioides, Ensifer, and Saccharomonospora were the special soil dominant bacterial genera in rhizospheres of oval watermelons (OW); Meanwhile, Cephalotrichum, Neocosmospora, Phialosimplex, and Papulaspora were the unique soil dominant fungal genera in rhizospheres of circular watermelon (CW); By contrast, Acremonium, Cladosporium, Cryptococcus_f__Tremellaceae, Sodiomyces, Microascus, Conocybe, Sporidiobolus, and Acremonium were the unique soil dominant fungal genera in rhizospheres of oval watermelons (OW). Additionally, Lechevalieria, Pseudorhodoferax, Pseudomonas, Massilia, Flavobacterium, Aeromicrobium, Stenotrophomonas, Pseudonocardia, Novosphingobium, Melittangium, and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW; In contrast, Falsirhodobacter, Kocuria, and Kineosporia were the special dominant endophytic genera in stems of OW; Moreover, Lectera and Fusarium were the unique dominant endophytic fungal genera in stems of CW; By contrast, Cercospora only was the special dominant endophytic fungal genus in stems of OW. All above results suggested that watermelons with different fruit shapes exactly recruited various microorganisms in rhizospheres and stems. Meanwhile, the enrichments of the different rhizosphric and endophytic microorganisms could be speculated in relating to watermelon fruit shapes formation.


Subject(s)
Bacteria , Citrullus , Endophytes , Fruit , Fungi , Rhizosphere , Soil Microbiology , Citrullus/microbiology , Endophytes/genetics , Fruit/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Microbiota/genetics
14.
Curr Microbiol ; 81(7): 170, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734822

ABSTRACT

As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.


Subject(s)
Phosphates , Rhizosphere , Soil Microbiology , Soil , Triticum , Triticum/microbiology , Triticum/growth & development , Phosphates/metabolism , Soil/chemistry , Fertilizers/analysis , Paenibacillus/metabolism , Paenibacillus/genetics , Paenibacillus/growth & development , Phosphorus/metabolism
15.
Environ Microbiol Rep ; 16(3): e13254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725134

ABSTRACT

Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.


Subject(s)
Bacteria , Droughts , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Morocco , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Biodiversity , Microbiota , DNA, Bacterial/genetics , Rhizobium/classification , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/physiology , Phylogeny
16.
Arch Microbiol ; 206(6): 256, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734826

ABSTRACT

A novel actinobacterium strain, designated HUAS 2-6 T, was isolated from the rhizosphere soil of Camellia oleifera Abel collected from Taoyuan County, Northwestern Hunan Province, South China. This strain was subjected to a polyphasic taxonomic study. Strain HUAS 2-6 T is characterized by morphology typical of members of the genus Streptomyces, with deep purplish vinaceous aerial mycelia and deep dull lavender substrate mycelia. Strain HUAS 2-6 T, based on the full-length 16S rRNA gene sequence analysis, exhibited the highest similarities to S. puniciscabiei S77T (99.31%), S. filipinensis NBRC 12860 T (99.10%), S. yaanensis CGMCC 4.7035 T (99.09%), S. fodineus TW1S1T (99.08%), S. broussonetiae CICC 24819 T (98.76%), S. achromogenes JCM 4121 T (98.69%), S. barringtoniae JA03T (98.69%), and less than 98.70% with other validly species. In phylogenomic tree, strain HUAS 2-6 T was clustered together with S. broussonetiae CICC 24819 T, suggesting that they were closely related to each other. However, average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) between them were much less than the species cutoff values (ANI 96.7% and dDDH 70%). Moreover, in phenotypic and chemotaxonomic characteristics, strain HUAS 2-6 T is distinct from S. broussonetiae CICC 24819 T. On the basis of the polyphasic data, strain HUAS 2-6 T is proposed to represent a novel species, Streptomyces camelliae sp. nov. (= MCCC 1K04729T = JCM 35918 T).


Subject(s)
Camellia , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Streptomyces , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/classification , Camellia/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Fatty Acids/analysis , Bacterial Typing Techniques , Sequence Analysis, DNA , Base Composition
17.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695903

ABSTRACT

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Subject(s)
Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
18.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709780

ABSTRACT

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Subject(s)
Bacteria , Glycine max , Nanoparticles , Rhizosphere , Silicon , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/chemistry , Nanoparticles/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/growth & development , Silicon/pharmacology , Silicon/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects , Soil Microbiology , Microbiota/drug effects , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Leaves/growth & development , Endophytes/physiology , Endophytes/drug effects , Silicon Dioxide/chemistry , Salt Stress
19.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38690786

ABSTRACT

Bacterial persistence in the rhizosphere and colonization of root niches are critical for the establishment of many beneficial plant-bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonization of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonization (rhizosphere progressive), and a further 119 genes necessary for colonization. Common determinants reveal a need to synthesize essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonization. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonization in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.


Subject(s)
Plant Roots , Rhizobium leguminosarum , Rhizosphere , Symbiosis , Plant Roots/microbiology , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/physiology , Fabaceae/microbiology , Fabaceae/growth & development , Soil Microbiology
20.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703845

ABSTRACT

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Subject(s)
Grassland , Nitrogen , Phosphorus , Rhizosphere , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , Soil/chemistry , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL
...