Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
Toxicology ; 505: 153843, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801936

ABSTRACT

Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 µM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , MicroRNAs , Rho Guanine Nucleotide Exchange Factors , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation/drug effects , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , K562 Cells , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Erythroid Cells/drug effects , Erythroid Cells/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Methyltransferases/genetics , Methyltransferases/metabolism
2.
Curr Biol ; 34(10): 2132-2146.e5, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38688282

ABSTRACT

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , GTPase-Activating Proteins , Animals , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actomyosin/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Female , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Embryo, Nonmammalian/metabolism , Body Patterning
3.
Cell Rep ; 43(5): 114016, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38636520

ABSTRACT

How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.


Subject(s)
Cell Shape , Guanine Nucleotide Exchange Factors , Humans , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Cell Line, Tumor , Microtubules/metabolism , Myosin Type II/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Melanoma/pathology , Melanoma/metabolism
4.
Invest Ophthalmol Vis Sci ; 65(2): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334702

ABSTRACT

Purpose: The cytoskeleton of the extraocular muscles (EOMs) is significantly different from that of other muscles. We aimed to investigate the role of obscurin, a fundamental cytoskeletal protein, in the EOMs. Methods: The distribution of obscurin in human and zebrafish EOMs was compared using immunohistochemistry. The two obscurin genes in zebrafish, obscna and obscnb, were knocked out using CRISPR/Cas9, and the EOMs were investigated using immunohistochemistry, qPCR, and in situ hybridization. The optokinetic reflex (OKR) in five-day-old larvae and adult obscna-/-;obscnb-/- and sibling control zebrafish was analyzed. Swimming distance was recorded at the same age. Results: The obscurin distribution pattern was similar in human and zebrafish EOMs. The proportion of slow and fast myofibers was reduced in obscna-/-;obscnb-/- zebrafish EOMs but not in trunk muscle, whereas the number of myofibers containing cardiac myosin myh7 was significantly increased in EOMs of obscurin double mutants. Loss of obscurin resulted in less OKRs in zebrafish larvae but not in adult zebrafish. Conclusions: Obscurin expression is conserved in normal human and zebrafish EOMs. Loss of obscurin induces a myofiber type shift in the EOMs, with upregulation of cardiac myosin heavy chain, myh7, showing an adaptation strategy in EOMs. Our model will facilitate further studies in conditions related to obscurin.


Subject(s)
Oculomotor Muscles , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors , Zebrafish , Animals , Humans , Immunohistochemistry , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Oculomotor Muscles/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Protein Serine-Threonine Kinases/genetics , Zebrafish Proteins/genetics
5.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314870

ABSTRACT

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Male , Female , Humans , Netrin-1/genetics , DCC Receptor/genetics , Movement Disorders/genetics , Mutation, Missense/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
6.
Commun Biol ; 7(1): 77, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200184

ABSTRACT

CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.


Subject(s)
Colitis , Neuroinflammatory Diseases , Animals , Humans , Mice , Cell Physiological Phenomena , Colitis/genetics , Cytoskeleton , Dendritic Cells , Rho Guanine Nucleotide Exchange Factors/genetics
7.
Kaohsiung J Med Sci ; 40(3): 221-230, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38180276

ABSTRACT

Previous studies have proved circFN1 is highly expressed in acute myeloid leukemia (AML) patients and AML cell lines. This study aims to investigate the impact of circFN1 on AML and its mechanism. Via real-time quantitative PCR to detect circFN1, miR-1294, ARHGEF10L expressions in clinical plasma samples and AML cell lines, AML cells were cultured in vitro and transfected with si-circFN1, pcDNA3.1-circFN1, and si-ARHGEF10L, respectively, or co-transfected pcDNA3.1-circFN1 + miR-1294 mimic and pcDNA3.1-circFN1 + si-ARHGEF10L. Using dual luciferase reporter experiment to detect the relationship between circFN1 and miR-1294, as well as miR-1294 and ARHGEF10L. CCK-8 was used to detect cell proliferation, Transwell to cell invasion, TUNEL staining and flow cytometry to detect cell apoptosis, RT-qPCR to circFN1 RNA, miR-1294, and ARHGEF10L expression levels in HL-60 cells, and western blot to ARHGEF10L protein expression level in HL-60 cells. We found highly expressed circFN1 and ARHGEF10L, as well as low-expressed miR-1294 in AML patients and AML cell lines. In contrast to si-NC group, si-circFN1 group could signally inhibit HL-60 cell proliferation and migration, but promote cell apoptosis; compared with mimic NC group, miR-1294 mimic group could visually inhibit HL-60 cell proliferation and migration, but promote cell apoptosis. miR-1294 was the target of circFN1, and ARHGEF10L was the target of miR-1294. Over-expressing miR-1294 or silencing ARHGEF10L could signally inhibit circFN1 promoting HL-60 cell proliferation and migration and repressing cell apoptosis. circFN1 promotes proliferation and invasion of AML cell and represses cell apoptosis via regulating miR-1294/ARHGEF10L axis, which provides new insight for molecular targeted-treatment for AML.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Humans , MicroRNAs/metabolism , Leukemia, Myeloid, Acute/genetics , HL-60 Cells , Apoptosis/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Rho Guanine Nucleotide Exchange Factors/genetics
8.
Cells Dev ; 177: 203899, 2024 03.
Article in English | MEDLINE | ID: mdl-38160720

ABSTRACT

Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.


Subject(s)
Microtubules , Neural Crest , Animals , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Neural Crest/metabolism , Microtubules/metabolism , Xenopus laevis , Cell Movement/genetics
9.
Neuromuscul Disord ; 34: 83-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159459

ABSTRACT

Obscurin, encoded by the OBSCN gene, is a muscle protein consisting of three main splice isoforms, obscurin-A, obscurin-B, and obscurin kinase-only protein (also known as KIAA1639 or Obsc-kin). Obscurin is located at the M-band and Z-disks and interacts with titin and myomesin. It plays an important role in the stability and maintenance of the A- and M-bands and the subsarcolemmal organization of the microtubule network. Furthermore, obscurin is involved in Ca2+ regulation and sarcoplasmic reticulum function and is connected to several other muscle proteins. OBSCN gene variants have been reported to be relatively common in inherited cardiomyopathies. Here we reported two young patients with a history of cramps, myalgia, exercise intolerance, rhabdomyolysis, and myoglobinuria without any evidence of concomitant cardiomyopathy in association with novel OBSCN variants (c.24822C>A and c.2653+1G>C). Obscurin-deficient muscle fibers seem to have increased susceptibility to damage triggered by exercise that may lead to rhabdomyolysis. More studies are needed to clarify the diverse clinical phenotypes and the pathophysiology of OBSCN gene variants.


Subject(s)
Muscle Proteins , Rhabdomyolysis , Humans , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Sarcomeres , Sarcoplasmic Reticulum/metabolism , Rhabdomyolysis/genetics , Rhabdomyolysis/metabolism , Protein Serine-Threonine Kinases/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
10.
Int J Mol Sci ; 24(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958718

ABSTRACT

Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF's catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Endothelial Cells/metabolism , GTP-Binding Proteins/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
11.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003617

ABSTRACT

Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Prognosis , Signal Transduction , Cell Movement/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
12.
Small GTPases ; 14(1): 45-54, 2023 12.
Article in English | MEDLINE | ID: mdl-37528624

ABSTRACT

The RhoGEF Trio is a large multi-domain protein and an activator of the small GTPases Rac1, RhoG, and RhoA. Although Trio has been implicated in many cellular mechanisms like leukocyte transendothelial migration, cell-cell junction stability, lamellipodia formation, axon outgrowth, and muscle fusion, it remains unclear how Trio is activated. Using stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry analysis of endothelial cells, we identified two serine residues (S1785/S1786) located in between the two exchange domains of Trio that were highly phosphorylated upon short thrombin treatment. Using phosphomimetic Trio S1785D/S1786D double mutants, we did not find an increase in Rac1/RhoG activity, indicating that the phosphorylation events do not increase Trio exchange activity. However, we found that the Trio mutants localized more strongly at cell-cell junctions and prevented junction destabilization upon thrombin treatment, judged by junction linearity. Our data suggest that serine phosphorylation of Trio potentiates the localization of Trio to junctional regions, resulting in locally promoting the exchange for Rac1 at junction regions and increasing endothelial cell-cell junction stability upon permeability-inducing reagents such as thrombin.


Subject(s)
Endothelial Cells , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Endothelial Cells/metabolism , Thrombin , rac1 GTP-Binding Protein/metabolism , Intercellular Junctions/metabolism
13.
Aging (Albany NY) ; 15(13): 6100-6116, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37432067

ABSTRACT

Long noncoding RNA MCF2L-AS1 functions in the development of cancers like lung cancer, ovarian cancer, and colorectal cancer. Notwithstanding, its function in hepatocellular carcinoma (HCC) stays obscure. Our research probes its role in MHCC97H and HCCLM3 cell proliferation, migration, and invasion. qRT-PCR gauged MCF2L-AS1 and miR-33a-5p expressions in HCC tissues. CCK8, colony formation, Transwell, and EdU assays detected HCC cell proliferation, invasion, and migration, respectively. The xenograft tumor model was built to confirm the MCF2L-AS1-mediated role in HCC cell growth. Western blot and immunohistochemistry detected FGF2 expression in HCC tissues. Bioinformatics analysis predicted the targeted relationships between MCF2L-AS1 or FGF2 and miR-33a-5p, which were further examined through dual-luciferase reporter gene and pull-down assays. MCF2L-AS1 was expressed highly in HCC tissues and cells. MCF2L-AS1 upregulation enhanced HCC cells' proliferation, growth, migration, and invasion and reduced apoptosis. miR-33a-5p was demonstrated as an underlying target of MCF2L-AS1. miR-33a-5p impeded HCC cells' malignant behaviors. MCF2L-AS1 overexpression reversed miR-33a-5p-mediated effects. MCF2L-AS1 knockdown enhanced miR-33a-5p and negatively regulated FGF2 protein. miR-33a-5p targeted and inhibited FGF2. miR-33a-5p overexpression or FGF2 knockdown inhibited MCF2L-AS1-mediated oncologic effects in MHCC97H. By modulating miR-33a-5p/FGF2, MCF2L-AS1 exerts a tumor-promotive function in HCC. The MCF2L-AS1-miR-33a-5p-FGF2 axis may provide new therapeutic targets for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/pathology , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
14.
Sci Signal ; 16(792): eadh0601, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402224

ABSTRACT

During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.


Subject(s)
Cytokinesis , Drosophila Proteins , Animals , Cytokinesis/physiology , Drosophila melanogaster/metabolism , Microtubules/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Spindle Apparatus/metabolism
15.
PLoS One ; 18(4): e0283934, 2023.
Article in English | MEDLINE | ID: mdl-37027440

ABSTRACT

The roles of Rho GTPases in various types of cancer have been extensively studied, but the research of Rho guanine nucleotide exchange factors (GEFs) in cancer is not comprehensive. Rho guanine nucleotide exchange factor 6 (ARHGEF6) is an important member of the Rho GEFs family involved in cytoskeletal rearrangement, and it has not been investigated in acute myeloid leukemia (AML). Our research showed that the expression of ARHGEF6 was mainly higher in AML cell lines, meanwhile, was highest in the samples from patients with AML compared to other cancer types. High ARHGEF6 expression in AML was associated with a good prognosis. ARHGEF6low cases showed significantly higher overall survival (OS) after autologous or allogeneic HSCT (auto/allo-HSCT). High expression of ARHGEF6 downregulates the negative regulation of myeloid differentiation process and upregulates G protein-coupled receptor signaling pathway-related processes, among which HOXA9, HOXB6, and TRH have significant differential expression and prognostic impact in AML. Therefore, ARHGEF6 can become a prognostic marker in AML; ARHGEF6low patients can gain from auto/allo-HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Rho Guanine Nucleotide Exchange Factors , Humans , Leukemia, Myeloid, Acute/genetics , Prognosis , Research Design , Retrospective Studies , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction
16.
PLoS One ; 18(4): e0284453, 2023.
Article in English | MEDLINE | ID: mdl-37079638

ABSTRACT

Obscurin is a giant muscle protein (>800 kDa) featuring multiple signalling domains, including an SH3-DH-PH domain triplet from the Trio-subfamily of guanosine nucleotide exchange factors (GEFs). While previous research suggests that these domains can activate the small GTPases RhoA and RhoQ in cells, in vitro characterization of these interactions using biophysical techniques has been hampered by the intrinsic instability of obscurin GEF domains. To study substrate specificity, mechanism and regulation of obscurin GEF function by individual domains, we successfully optimized recombinant production of obscurin GEF domains and found that MST-family kinases phosphorylate the obscurin DH domain at Thr5798. Despite extensive testing of multiple GEF domain fragments, we did not detect any nucleotide exchange activity in vitro against 9 representative small GTPases. Bioinformatic analyses show that obscurin differs from other Trio-subfamily GEFs in several important aspects. While further research is necessary to evaluate obscurin GEF activity in vivo, our results indicate that obscurin has atypical GEF domains that, if catalytically active at all, are subject to complex regulation.


Subject(s)
Nucleotides , rho GTP-Binding Proteins , rho GTP-Binding Proteins/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , Muscle Proteins
17.
Arch Biochem Biophys ; 741: 109597, 2023 06.
Article in English | MEDLINE | ID: mdl-37054768

ABSTRACT

Mast cells are the major effector cells in allergic diseases. RhoA and its downstream pathway is associated with the pathogenesis of airway allergy. The objective of this study is to test a hypothesis that modulating the RhoA-GEF-H1 axis in mast cells can attenuate airway allergy. An airway allergic disorder (AAD) mouse model was employed. Mast cells were isolated from AAD mouse airway tissues to be analyzed by RNA sequencing. We observed that mast cells isolated from the respiratory tract of AAD mice were resistant to apoptosis. Mast cell mediator levels in nasal lavage fluid were correlated with apoptosis resistance in AAD mice. Activation of RhoA in AAD mast cells was related to resistance to apoptosis. Mast cells isolated from the airway tissues in AAD mouse exhibited strong RhoA-GEF-H1 expression. The RhoA-GEF-H1 axis was associated with the lower FasL expression in AAD mast cells. Activation of the RhoA-GEF-H1 axis promoted the production of mediators in mast cells. Inhibition of GEF-H1 facilitated the SIT-induced mast cell apoptosis and enhanced the therapeutic efficacy of AAD. In conclusion, RhoA-GEF-H1 activities are associated with resistance to apoptosis in mast cells isolated from sites of allergic lesions. The state of apoptosis resistance in mast cells is associated with the state of AAD disease. Inhibition of GEF-H1 restores the sensitivity of mast cells to apoptosis inducers, and alleviates experimental AAD in mice.


Subject(s)
Mast Cells , Respiratory Hypersensitivity , Animals , Mice , Mast Cells/metabolism , Phosphorylation , Respiratory System/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , rhoA GTP-Binding Protein/metabolism , Respiratory Hypersensitivity/therapy
18.
Curr Biol ; 33(5): 858-874.e7, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917931

ABSTRACT

Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.


Subject(s)
Actomyosin , Epithelial Cells , Animals , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Actomyosin/metabolism , Cell Division , Cytokinesis , Drosophila
19.
Sci Adv ; 9(2): eabq6480, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36630496

ABSTRACT

Cells tune adherens junction dynamics to regulate epithelial integrity in diverse (patho)physiological processes, including cancer metastasis. We hypothesized that the spatially confining architecture of peritumor stroma promotes metastatic cell dissemination by remodeling cell-cell adhesive interactions. By combining microfluidics with live-cell imaging, FLIM/FRET biosensors, and optogenetic tools, we show that confinement induces leader cell dissociation from cohesive ensembles. Cell dissociation is triggered by myosin IIA (MIIA) dismantling of E-cadherin cell-cell junctions, as recapitulated by a mathematical model. Elevated MIIA contractility is controlled by RhoA/ROCK activation, which requires distinct guanine nucleotide exchange factors (GEFs). Confinement activates RhoA via nucleocytoplasmic shuttling of the cytokinesis-regulatory proteins RacGAP1 and Ect2 and increased microtubule dynamics, which results in the release of active GEF-H1. Thus, confining microenvironments are sufficient to induce cell dissemination from primary tumors by remodeling E-cadherin cell junctions via the interplay of microtubules, nuclear trafficking, and RhoA/ROCK/MIIA pathway and not by down-regulating E-cadherin expression.


Subject(s)
Cytokinesis , Intercellular Junctions , Cadherins/metabolism , Cytokinesis/physiology , Intercellular Junctions/metabolism , Microtubules/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Humans
20.
Nat Commun ; 14(1): 96, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609407

ABSTRACT

Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.


Subject(s)
Actins , Cytoskeleton , Animals , Rho Guanine Nucleotide Exchange Factors/genetics , Lipids , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...