Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.450
Filter
1.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834271

ABSTRACT

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Mice , Humans , Infrared Rays , Optical Imaging , Glutathione/analysis , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Cysteine/analysis , Rhodamines/chemistry , Rhodamines/toxicity , Homocysteine/analysis , Luminescence
2.
Water Sci Technol ; 89(9): 2209-2224, 2024 May.
Article in English | MEDLINE | ID: mdl-38747945

ABSTRACT

The research presented in this paper is to determine the best tracer studies that will give acceptable estimates of longitudinal dispersion coefficient for Orashi river using rhodamine WT dye and sodium chloride as water tracer. Estimated results obtained for longitudinal dispersion coefficient for the case of rhodamine WT experiment ranges between 71 and 104.4 m2s-1 while that of sodium chloride experiment ranges between 20.1 and 34.71 m2s-1. These results revealed lower dispersion coefficient using sodium chloride as water tracer (WT) indicating that for larger rivers, sodium chloride should not be used as water tracer. The usage of sodium chloride as water tracer in the estimation of longitudinal dispersion coefficient is recommended in smaller streams as NaCl is relatively conservative. The established equations for both cases of investigation are proving satisfactory upon validation as degree of accuracy of 100.0% was obtained using discrepancy ratio (Dr). Standard error (SE), normal mean error (NME) and mean multiplication error (MME) of the developed equations is better when compared with other existing equations. However, Equation (17) is satisfactorily recommended.


Subject(s)
Sodium Chloride , Sodium Chloride/chemistry , Water Movements , Rhodamines/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis
3.
Biosens Bioelectron ; 258: 116343, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718636

ABSTRACT

Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.


Subject(s)
Biosensing Techniques , Water Pollutants, Chemical , Biosensing Techniques/methods , Water Pollutants, Chemical/analysis , Fluorescent Dyes/chemistry , Fluorocarbons/chemistry , Luminescence , Silicates/chemistry , Rhodamines/chemistry , Limit of Detection , Quantum Dots/chemistry
4.
Nat Commun ; 15(1): 4206, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760339

ABSTRACT

The fluorescent light-up aptamer RhoBAST, which binds and activates the fluorophore-quencher conjugate tetramethylrhodamine-dinitroaniline with high affinity, super high brightness, remarkable photostability, and fast exchange kinetics, exhibits excellent performance in super-resolution RNA imaging. Here we determine the co-crystal structure of RhoBAST in complex with tetramethylrhodamine-dinitroaniline to elucidate the molecular basis for ligand binding and fluorescence activation. The structure exhibits an asymmetric "A"-like architecture for RhoBAST with a semi-open binding pocket harboring the xanthene of tetramethylrhodamine at the tip, while the dinitroaniline quencher stacks over the phenyl of tetramethylrhodamine instead of being fully released. Molecular dynamics simulations show highly heterogeneous conformational ensembles with the contact-but-unstacked fluorophore-quencher conformation for both free and bound tetramethylrhodamine-dinitroaniline being predominant. The simulations also show that, upon RNA binding, the fraction of xanthene-dinitroaniline stacked conformation significantly decreases in free tetramethylrhodamine-dinitroaniline. This highlights the importance of releasing dinitroaniline from xanthene tetramethylrhodamine to unquench the RhoBAST-tetramethylrhodamine-dinitroaniline complex. Using SAXS and ITC, we characterized the magnesium dependency of the folding and binding mode of RhoBAST in solution and indicated its strong structural robustness. The structures and binding modes of relevant fluorescent light-up aptamers are compared, providing mechanistic insights for rational design and optimization of this important fluorescent light-up aptamer-ligand system.


Subject(s)
Aniline Compounds , Fluorescent Dyes , Molecular Dynamics Simulation , Rhodamines , Rhodamines/chemistry , Fluorescent Dyes/chemistry , Aniline Compounds/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Crystallography, X-Ray , Binding Sites , Ligands
5.
Mikrochim Acta ; 191(6): 337, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777890

ABSTRACT

A ratiometric fluorescence method comprising carbon dots (CDs) and rhodamine 6G (Rh-6G) encapsulated in the microcubes of metal-organic framework (MOF-5) is introduced for the sensitive detection of curcumin (Cur) in condiments. CDs@MOF-5@Rh-6G, synthesized by the adsorption of Rh-6G on MOF-5 embedded with CDs, showed two distinct emission peaks at 435 and 560 nm under excitation at 335 nm, and could be used for Cur detection by ratiometric fluorescence. In the presence of Cur, the fluorescence of the CDs at 435 nm (F435) was quenched by Cur owing to internal filtering and dynamic quenching effects, whereas the emission of Rh-6G at 560 nm (F560) remained unchanged (335 nm is the excitation wavelength, 435 and 560 nm are the emission wavelengths, in which F435/F560 values are used as the output results). Under optimal conditions, a linear relationship was observed between the Cur concentration (in the range 0.1-5 µmol/L) and F435/F560 value for CDs@MOF-5@Rh-6G, with a detection limit of 15 nmol/L. Notably, the proposed method could accurately detect Cur in mustard, curry, and red pepper powders. Therefore, this study could improve the quality control of food and facilitate the development of sensitive ratiometric fluorescence probes.


Subject(s)
Carbon , Curcumin , Fluorescent Dyes , Limit of Detection , Metal-Organic Frameworks , Quantum Dots , Rhodamines , Spectrometry, Fluorescence , Curcumin/chemistry , Rhodamines/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry
6.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691183

ABSTRACT

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Subject(s)
Lead , Nanocomposites , Rhodamines , Water Pollutants, Chemical , Zinc Oxide , Lead/chemistry , Zinc Oxide/chemistry , Rhodamines/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Cetrimonium/chemistry , Environmental Restoration and Remediation/methods , Green Chemistry Technology , Nanostructures/chemistry
7.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732037

ABSTRACT

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Confocal , Mitochondria , Humans , Mitochondria/metabolism , Microscopy, Confocal/methods , Imaging, Three-Dimensional/methods , Fluorescent Dyes/chemistry , Membrane Potential, Mitochondrial , Carbocyanines/chemistry , Rhodamines/chemistry
8.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732166

ABSTRACT

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Subject(s)
Bismuth , Photolysis , Rhodamines , Catalysis , Bismuth/chemistry , Rhodamines/chemistry , Light , Ferric Compounds/chemistry , Nitrogen Compounds/chemistry , Titanium/chemistry , Photochemical Processes , Nitriles/chemistry , Kinetics , Graphite , Oxides , Calcium Compounds
9.
J Chem Inf Model ; 64(10): 4134-4148, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38703206

ABSTRACT

Ubiquitin-specific protease 7 (USP7) is a deubiquitinase enzyme that plays a critical role in regulating various cellular processes by cleaving ubiquitin molecules from target proteins. The C-terminal loop (CTL) motif is a specific region at the C-terminal end of the USP7 enzyme. Recent experiments suggest that the CTL motif plays a role in USP7's catalytic activity by contributing to the enzyme's structural stability, substrate recognition, and catalytic efficiency. The objective of this work is to elucidate these roles through the utilization of computational methods for molecular simulations. For this, we conducted extensive molecular dynamics (MD) simulations to investigate the conformational dynamics and protein-protein interactions within the USP7 enzyme-substrate complex with the substrate consisting of the ubiquitin tagged with the fluorescent label rhodamine 110-gly (Ub-Rho). Our results demonstrate that the CTL motif plays a crucial role in stabilizing the Ubl domains' conformation and augmenting the stability of active conformations within the enzyme-substrate complex. Conversely, the absence of the CTL motif results in increased flexibility and variability in Ubl domains' motion, leading to a reduced percentage of active conformations. Furthermore, our analysis of protein-protein interactions highlights the significance of the CTL motif in anchoring the Ubl45 domains to the catalytic domain (CD), thereby facilitating stable interactions with the substrate. Overall, our findings provide valuable insights into the conformational dynamics and protein-protein interactions inherent in the USP7 enzyme-substrate complex. These insights shed light on some mechanistic details of USP7 concerning the substrate's recognition before its catalytic action.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Ubiquitin-Specific Peptidase 7 , Ubiquitin , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/chemistry , Substrate Specificity , Ubiquitin/metabolism , Ubiquitin/chemistry , Protein Domains , Humans , Rhodamines/chemistry , Rhodamines/metabolism , Protein Conformation
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124407, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723466

ABSTRACT

Copper is one of the common among the heavy metal pollution in Chinese herbal medicine (CHM). So, it is essential to develop rapid and accurate testing method to quantify the Cu2+ content in CHM. Herein, we prepared a coordination-based near-infrared fluorescent probe (NRh6G-FA) by introducing a hemicyanine dye in rhodamine 6G scaffold. NRh6G-FA had a high sensitivity, anti-interference performance, fast response (within 60 s), visualization (from light yellow to green) for Cu2+ and excellent sensing performance for the detection of Cu2+ at low concentrations (LOD = 0.225 µM). The most likely mechanism was verified on the basis of Job's plot, ESI-HRMS and DFT calculations. NRh6G-FA could be successfully applied for the detection and "naked eye" recognition of Cu2+ in CHM samples. Moreover, NRh6G-FA was used to visualize Cu2+ in living MCF-7 cells by confocal fluorescence imaging.


Subject(s)
Copper , Drugs, Chinese Herbal , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Copper/analysis , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , MCF-7 Cells , Rhodamines/chemistry , Optical Imaging , Spectrometry, Fluorescence/methods , Limit of Detection
11.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792206

ABSTRACT

Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene's ring A was modified with two acetyloxy groups in order to possibly boost its cytotoxic activity. The SRB assays' cytotoxicity data showed that conjugates 13-22, derived from betulinic acid, had a significantly higher cytotoxicity. Of these hybrids, derivatives 19 (containing rhodamine B) and 22 (containing rhodamine 101) showed the best values with EC50 = 0.016 and 0.019 µM for A2780 ovarian carcinoma cells. Additionally, based on the ratio of EC50 values, these two compounds demonstrated the strongest selectivity between malignant A2780 cells and non-malignant NIH 3T3 fibroblasts. A375 melanoma cells were used in cell cycle investigations, which showed that the cells were halted in the G1/G0 phase. Annexin V/FITC/PI staining demonstrated that the tumor cells were affected by both necrosis and apoptosis.


Subject(s)
Apoptosis , Rhodamines , Triterpenes , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/chemical synthesis , Humans , Rhodamines/chemistry , Mice , Animals , Cell Line, Tumor , NIH 3T3 Cells , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Betulinic Acid , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/chemical synthesis , Cell Cycle/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Lupanes
12.
Environ Sci Pollut Res Int ; 31(24): 35631-35650, 2024 May.
Article in English | MEDLINE | ID: mdl-38739338

ABSTRACT

Magnetic nanoparticles have emerged as a promising tool for wastewater treatment due to their unique properties. In this regard, Co0.33Mg0.33Ni0.33SmxFe2-xO4 (0.00 ≤ x ≤ 0.08) nanoparticles were prepared to examine their magnetic separation efficiency (MSE), photocatalytic, antibacterial, and antibiofilm performances. Pure nanoparticles, having the highest saturation magnetization (Ms = 31.87 emu/g), exhibit the highest MSE, where 95.6% of nanoparticles were separated after 20 min of applying a magnetic field of 150 mT. The catalytic performance of the prepared samples is examined by the photodegradation of rhodamine B (RhB) dye exposed to direct sunlight radiation. Improved photocatalytic activity is exhibited by Co0.33Mg0.33Ni0.33Sm0.04Fe1.96O4 nanoparticles, labeled as Sm0.04, where the rate of the degradation reaction is enhanced by 4.1 times compared to pure nanoparticles. Rising the pH and reaction temperature improves the rate of the photodegradation reaction of RhB. The incorporation of 15 wt% reduced graphene oxide (rGO) with Sm0.04 enhanced the rate of the reaction by 1.7 and 2.4 times compared with pure Sm0.04 sample and rGO, respectively. The antibacterial and antibiofilm activities against Escherichia coli, Leclercia adecarboxylata, Staphylococcus aureus, and Enterococcus faecium are assessed by the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) broth microdilution, the agar well diffusion, the time-kill assays, the biofilm formation, and destruction assays. The bacteria used in these assessments are isolated from wastewater. The nanoparticles exhibit a bacteriostatic activity, with a better effect against the Gram-positive isolates. Co0.33Mg0.33Ni0.33SmxFe2O4 (x = 0.00) nanoparticles have the best effect. The effect is exerted after 2-3 h of incubation. Gram-positive biofilms are more sensitive to nanoparticles.


Subject(s)
Anti-Bacterial Agents , Sunlight , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Photolysis , Rhodamines/chemistry , Biofilms/drug effects
13.
Anal Chem ; 96(22): 9141-9150, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38779970

ABSTRACT

Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS). PDAP efficiently splits a microliter droplet into submicroliter to nanoliter droplets under gravity-driven flow by wettability contrast between two distinct regions. The desired hydrophobicity and adhesive contrast between the silicone oil-grafted nonadhesive hydrophilic zone with gold nanoparticles is attained through (3-aminopropyl) triethoxysilane (APTES) functionalization of gold nanoparticles (AuNPs) using a scotch-tape mask. The wettability contrast surface facilitates the splitting of aqueous droplets with various surface tensions (ranging from 39.08 to 72 mN/m) into ultralow volumes of nanoliters. The developed PDAP was used for the multiplexed detection of Rhodamine 6G (Rh6G) and Crystal Violet (CV) dyes. The limit of detection for 120 nL droplet using PDAP was found to be 134 pM and 10.1 nM for Rh6G and CV, respectively. These results align with those from previously reported platforms, highlighting the comparable sensitivity of the developed PDAP. We have also demonstrated the competence of PDAP by testing adulterant spiked milk and obtained very good sensitivity. Thus, PDAP has the potential to be used for the multiplexed screening of food adulterants.


Subject(s)
Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Wettability , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Rhodamines/chemistry , Silanes/chemistry , Limit of Detection , Animals , Milk/chemistry , Surface Properties , Particle Size
14.
ACS Appl Mater Interfaces ; 16(22): 28222-28229, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779815

ABSTRACT

ß-Glucosidase (EC 3.2.1.21) from sweet almond was encapsulated into pH-responsive alginate-polyethylenimine (alginate-PEI) hydrogel. Then, electrochemically controlled cyclic local pH changes resulting from ascorbate oxidation (acidification) and oxygen reduction (basification) were used for the pulsatile release of the enzyme from the composite hydrogel. Activation of the enzyme was controlled by the very same pH changes used for ß-glucosidase release, separating these two processes in time. Importantly, the activity of the enzyme, which had not been released yet, was inhibited due to the buffering effect of PEI present in the gel. Thus, only a portion of the released enzyme was activated. Both enzymatic activity and release were monitored by confocal fluorescence microscopy and regular fluorescent spectroscopy. Namely, commercially available very little or nonfluorescent substrate 4-methylumbelliferyl-ß-d-glucopyranoside was hydrolyzed by ß-glucosidase to produce a highly fluorescent product 4-methylumbelliferone during the activation phase. At the same time, labeling of the enzyme with rhodamine B isothiocyanate was used for release observation. The proposed work represents an interesting smart release-activation system with potential applications in biomedical field.


Subject(s)
Alginates , Hydrogels , Polyethyleneimine , beta-Glucosidase , Alginates/chemistry , Hydrogels/chemistry , Polyethyleneimine/chemistry , Hydrogen-Ion Concentration , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Rhodamines/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hymecromone/chemistry , Enzyme Activation/drug effects , Prunus/enzymology , Prunus/chemistry , Glucuronic Acid/chemistry , Electrochemical Techniques
15.
Chemosphere ; 359: 142352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759808

ABSTRACT

Persistent molecules, such as pesticides, herbicides, and pharmaceuticals, pose significant threats to both the environment and human health. Advancements in developing efficient photocatalysts for degrading these substances can play a fundamental role in remediating contaminated environments, thereby enhancing safety for all forms of life. This study investigates the enhancement of photocatalytic efficiency achieved by incorporating La3+ into Ag3PO4, using the co-precipitation method in an aqueous medium. These materials were utilized in the photocatalytic degradation of Rhodamine B (RhB) and Ciprofloxacin (CIP) under visible light irradiation, with monitoring conducted through high-performance liquid chromatography (HPLC). The synthesized materials exhibited improved stability and photodegradation levels for RhB. Particularly noteworthy was the 2% La3+-incorporated sample (APL2), which achieved a 32.6% mineralization of CIP, nearly three times higher than pure Ag3PO4. Toxicological analysis of the residue from CIP photodegradation using the microalga Raphidocelis subcapitata revealed high toxicity due to the leaching of Ag + ions from the catalyst. This underscores the necessity for cautious wastewater disposal after using the photocatalyst. The toxicity of the APL2 photocatalysts was thoroughly assessed through comprehensive toxicological tests involving embryo development in Danio rerio, revealing its potential to induce death and malformations in zebrafish embryos, even at low concentrations. This emphasizes the importance of meticulous management. Essentially, this study adeptly delineated a thorough toxicological profile intricately intertwined with the photocatalytic efficacy of newly developed catalysts and the resultant waste produced, prompting deliberations on the disposal of degraded materials post-exposure to photocatalysts.


Subject(s)
Lanthanum , Phosphates , Photolysis , Rhodamines , Silver Compounds , Water Pollutants, Chemical , Zebrafish , Silver Compounds/chemistry , Catalysis , Rhodamines/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Phosphates/chemistry , Phosphates/toxicity , Lanthanum/chemistry , Lanthanum/toxicity , Animals , Ciprofloxacin/chemistry , Ciprofloxacin/toxicity , Light
16.
Anal Chem ; 96(22): 9034-9042, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38773734

ABSTRACT

Allysine, a pivotal biomarker in fibrogenesis, has prompted the development of various radioactive imaging probes. However, fluorogenic probes targeting allysine remain largely unexplored. Herein, by leveraging the equilibrium between the nonfluorescent spirocyclic and the fluorescent zwitterionic forms of rhodamine-cyanine hybrid fluorophores, we systematically fine-tuned the environmental sensitivity of this equilibrium toward the development of fluorogenic probes for fibrosis. The trick lies in modulating the nucleophilicity of the ortho-carboxyl group, which is terminated with a hydrazide group for allysine conjugation. Probe B2 was developed with this strategy, which featured an N-sulfonyl amide group and exhibited superior fibrosis-to-control imaging contrast. Initially presenting as nonfluorescent spirocyclic aggregates in aqueous solutions, B2 displayed a notable fluorogenic response upon conjugation with protein allysine through its hydrazide group, inducing deaggregation and switching to the fluorescent zwitterionic form. Probe B2 outperformed the traditional Masson stain in imaging contrast, achieving an about 260-2600-fold ratio for fibrosis-to-control detection depending on fibrosis severity. Furthermore, it demonstrated efficacy in evaluating antifibrosis drugs. Our results emphasize the potential of this fluorogenic probe as an alternative to conventional fibrosis detection methods. It emerges as a valuable tool for antifibrosis drug evaluation.


Subject(s)
Fibrosis , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Optical Imaging , Mice , Humans , Rhodamines/chemistry
17.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793920

ABSTRACT

Soybean is grown worldwide for its high protein and oil content. Weeds compete fiercely for resources, which affects soybean yields. Because of the progressive enhancement of weed resistance to herbicides and the quickly increasing cost of manual weeding, mechanical weed control is becoming the preferred method of weed control. Mechanical weed control finds it difficult to remove intra-row weeds due to the lack of rapid and precise weed/soybean detection and location technology. Rhodamine B (Rh-B) is a systemic crop compound that can be absorbed by soybeans which fluoresces under a specific excitation light. The purpose of this study is to combine systemic crop compounds and computer vision technology for the identification and localization of soybeans in the field. The fluorescence distribution properties of systemic crop compounds in soybeans and their effects on plant growth were explored. The fluorescence was mainly concentrated in soybean cotyledons treated with Rh-B. After a comparison of soybean seedlings treated with nine groups of rhodamine B solutions at different concentrations ranging from 0 to 1440 ppm, the soybeans treated with 180 ppm Rh-B for 24 h received the recommended dosage, resulting in significant fluorescence that did not affect crop growth. Increasing the Rh-B solutions reduced crop biomass, while prolonged treatment times reduced seed germination. The fluorescence produced lasted for 20 days, ensuring a stable signal in the early stages of growth. Additionally, a precise inter-row soybean plant location system based on a fluorescence imaging system with a 96.7% identification accuracy, determined on 300 datasets, was proposed. This article further confirms the potential of crop signaling technology to assist machines in achieving crop identification and localization in the field.


Subject(s)
Glycine max , Rhodamines , Seedlings , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Seedlings/growth & development , Rhodamines/chemistry , Crops, Agricultural/growth & development , Germination/physiology , Germination/drug effects , Plant Weeds/growth & development , Plant Weeds/drug effects , Fluorescence
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124385, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38714005

ABSTRACT

A novel colorimetric-fluorescent dual-mode chemosensor (JT5) based on rhodamine B has been produced for monitoring Sn4+ in the DMSO/H2O (4:1, v/v) medium. It has high sensitivity, a low detection limit, a short response time (1 s) and high stability, and can still be maintained after two weeks with the red dual fluorescence/ colorimetric response. Enhancement of red fluorescence (591 nm) and red colorimetric (567 nm) response of JT5 by Sn4+ addition. The electrostatic potential of the sensor JT5 molecule was simulated to speculate on the sensing mechanism, and the IR, mass spectrometry and 1H NMR titration were utilized to further demonstrate that JT5 was coordinated to Sn4+ with a 1:1 type, the rhodamine spironolactam ring of JT5 opens up to form a penta-membered ring with Sn4+, meanwhile, its system may have chelation enhanced fluorescence (CHEF) effect. In addition, theoretical calculations were carried out to give the energy gaps of JT5 and [JT5 + Sn4+] as well as to simulate the electronic properties of the maximal absorption peaks. Notably, the sensor JT5 was successfully applied to monitoring Sn4+ in zebrafish, and the JT5-loaded filter paper provided a solid-state platform for detecting Sn4+ by both naked eye and fluorescent methods. In summary, this work contributes to monitoring Sn4+ in organisms and solid-state materials and promotes understanding of Sn4+ functions in biological systems, environments, and solid-state materials.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Rhodamines , Spectrometry, Fluorescence , Zebrafish , Rhodamines/chemistry , Animals , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Water/chemistry , Colorimetry/methods , Limit of Detection
19.
Int J Biol Macromol ; 270(Pt 2): 132350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750839

ABSTRACT

Wound biofilms represent an elusive conundrum in contemporary treatment and diagnostic options, accredited to their escalating antibiotic resistance and interference in chronic wound healing processes. Here, we developed mesoporous polydopamine (mPDA) nanoparticles, and grafted with rhodamine B (Rb) as biofilm lipase responsive detection probe, followed by π - π stacking mediated ciprofloxacin (CIP) loading to create mP-Rb@CIP nanoparticles. mPDA NPs with a melanin structure could quench fluorescence emissions of Rb. Once encountering biofilm in vivo, the ester bond in Rb and mPDA is hydrolyzed by elevated lipase concentrations, triggering the liberation of Rb and restore fluorescence emissions to achieve real-time imaging of biofilm-infected wounds. Afterwards, the 808 nm near-infrared (NIR) illumination initiates a spatiotemporal controlled antibacterial photothermal therapy (PTT), boosting its effectiveness through photothermal-triggered CIP release for synergistic biofilm eradication. The mP-Rb@CIP platform exhibits dual diagnostic and therapeutic functions, efficaciously treating biofilm-infected wounds in vivo and in vitro. Particularly, the mP-Rb@CIP/NIR procedure expedites wound-healing by alleviating oxidative stress, modulating inflammatory mediators, boosting collagen synthesis, and promoting angiogenesis. Taken together, the theranostic nanosystem strategy holds significant potential for addressing wound biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Indoles , Lipase , Nanoparticles , Polymers , Indoles/chemistry , Indoles/pharmacology , Biofilms/drug effects , Polymers/chemistry , Lipase/metabolism , Lipase/chemistry , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/therapy , Photothermal Therapy/methods , Rhodamines/chemistry , Wound Healing/drug effects , Humans
20.
J Mater Chem B ; 12(15): 3686-3693, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563159

ABSTRACT

Photodynamic therapy (PDT) has emerged as a promising approach for tumor treatment. However, traditional type II PDT faces limitations due to its oxygen-dependent nature. Type-I photosensitizers (PSs) exhibit superiority over conventional type-II PSs owing to their diminished oxygen dependence. Nevertheless, designing effective type-I PSs remains a significant challenge. In this work, we provide a novel strategy to tune the PDT mechanism of an excited photosensitizer through aryl substituent engineering. Using S-rhodamine as the base structure, three PSs were synthesized by incorporating phenyl, furyl, or thienyl groups at the meso position. Interestingly, furyl- or thienyl-substituted S-rhodamine are type-I-dominated PSs that produce O2˙-, while phenyl S-rhodamine results in O2˙- and 1O2 through type-I and type-II mechanisms, respectively. Experimental analyses and theoretical calculations showed that the introduction of a five-membered heterocycle at the meso position promoted intersystem crossing (ISC) and electron transfer, facilitating the production of O2˙-. Furthermore, furyl- or thienyl-substituted S-rhodamine exhibited high phototoxicity at ultralow concentrations. Thienyl-substituted S-rhodamine showed promising PDT efficacy against hypoxic solid tumors. This innovative strategy provides an alternative approach to developing new type-I PSs without the necessity for creating entirely new skeletons.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mitochondria , Oxygen , Rhodamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...