Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Article in English | MEDLINE | ID: mdl-38869492

ABSTRACT

Two novel strains, designated APW6T and APW11T, were isolated from artificial pond water, and one novel strain, designated PFR6T, was isolated from a Viola mandshurica root. These strains were found to be Gram-negative, rod-shaped, motile by means of flagella, and oxidase-positive. Growth conditions of the type strains were as follows: APW6T, 15-43 °C (optimum, 28 °C), pH 6.0-12.0 (optimum, pH 7.0), with no salinity; APW11T, 4-35 °C (optimum, 25 °C), pH 6.0-11.0 (optimum, pH 9.0), with 0-1 % NaCl (w/v, optimum 0 %); PFR6T, 10-38 °C (optimum 28 °C), pH 6.0-12.0 (optimum, pH 7.0), with 0-2 % NaCl (w/v; optimum, 0 %). Strains APW6T, APW11T, and PFR6T belonged to the genus Roseateles, having the most 16S rRNA gene sequence similarity to Roseateles saccharophilus DSM 654T (98.1 %), Roseateles oligotrophus CHU3T (98.7 %), and Roseateles puraquae CCUG 52769T (98.1 %). The estimated genome sizes of APW6T, APW11T, and PFR6T were 50 50 473, 56 70 008, and 52 16 869 bp, respectively and the G+C contents were 69.5, 66, and 68.5 mol%. The digital DNA-DNA hybridization, average amino acid identity, and average nucleotide identity values among the novel strains and related taxa were all lower than 22.4, 74.7, and 78.9 %, respectively. The predominant cellular fatty acids (>10 %) of all strains were summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. PFR6T also had summed feature 8 (comprising C18 :  1 ω7c and/or C18 :  1 ω6c) as a major fatty acid. The polar lipid profile of all strains contained phosphatidylethanolamine, phosphoaminoglycolipid, and phosphoglycolipid. The distinct phylogenetic, physiological, and chemotaxonomic features reported in this study indicate that strains APW6T, APW11T, and PFR6T represent novel species within the genus Roseateles, for which the names Roseateles subflavus sp. nov., with the type strain APW6T (=KACC 22877T=TBRC 16606T), Roseateles aquae sp. nov., with the type strain APW11T (=KACC 22878T=TBRC 16607T), and Roseateles violae sp. nov (=KACC 23257T=TBRC 17653T) are respectively proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , Plant Roots , Ponds , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ponds/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , DNA, Bacterial/genetics , Plant Roots/microbiology , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/genetics , Rhodobacteraceae/classification , Nucleic Acid Hybridization , Water Microbiology
2.
Curr Microbiol ; 81(7): 178, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758299

ABSTRACT

A novel Gram-stain-negative, strictly aerobic, short-rod-shaped, and chemo-organoheterotrophic bacterium, designated KMU-50T, was isolated from seawater gathered from Dadaepo Harbor in South Korea. The microorganism grew at 0-4.0% NaCl concentrations (w/v), pH 6.0-8.0, and 4-37 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain KMU-50T is a novel member of the family Roseobacteraceae and were greatly related to Aliiroseovarius crassostreae CV919-312T with sequence similarity of 98.3%. C18:1 ω7c was the main fatty acid and ubiquinone-10 was the only isoprenoid quinone. The dominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids, an unidentified aminolipid, and an unidentified lipid. The genome size of strain KMU-50T was 3.60 Mbp with a DNA G+C content of 56.0%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between the genomes of strain KMU-50T and its closely related species were 76.0-81.2% and 62.2-81.5%, respectively. The digital DNA-DNA hybridization (dDDH) value of strain KMU-50T with the strain of A. crassostreae CV919-312T was 25.1%. The genome of the strain KMU-50T showed that it encoded many genes involved in the breakdown of bio-macromolecules, thus showing a high potential as a producer of industrially useful enzymes. Consequently, the strain is described as a new species in the genus Aliiroseovarius, for which the name Aliiroseovarius salicola sp. nov., is proposed with the type strain KMU-50T (= KCCM 90480T = NBRC 115482T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Rhodobacteraceae , Seawater , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/physiology , Fatty Acids/chemistry , DNA, Bacterial/genetics , Republic of Korea , Phospholipids/analysis , Ubiquinone/chemistry , Sequence Analysis, DNA , Genome, Bacterial , Nucleic Acid Hybridization
3.
BMC Genomics ; 25(1): 389, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649849

ABSTRACT

BACKGROUND: The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS: This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS: Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.


Subject(s)
Genome, Bacterial , Multigene Family , Oxidation-Reduction , Phylogeny , Rhodobacteraceae , Sulfur , Sulfur/metabolism , Rhodobacteraceae/genetics , Rhodobacteraceae/classification
4.
Curr Microbiol ; 81(6): 150, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647555

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped, motile, flagellated bacterial strain, designated as CAU 1639T, was isolated from the tidal flat sediment on the Yellow Sea in the Republic of Korea. Growth of the isolate was observed at 20-37 °C, at pH 5.0-10.5 and with 0-7% (w/v) NaCl. The genomic DNA G + C content was 60.8%. Phylogenetic analysis, grounded on 16S rRNA gene sequencing, revealed that strain CAU 1639T was closely related to species within the genus Roseibium. It shared the highest similarity with Roseibium album CECT 5095T, followed by Roseibium aggregatum IAM 12614T and Roseibium salinum Cs25T, with 16S rRNA gene sequence similarity ranging from 98.0-98.4%. It was observed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values ranged between 72.5-79.5 and 20.0-22.9%, respectively. The polyphasic taxonomic analysis reveals that strain CAU 1639T represents a novel species in the genus Roseibium with the proposed name Roseibium sediminicola sp. nov. The type strain is CAU 1639T (= KCTC 82430T = MCCC 1K06081T).


Subject(s)
Base Composition , DNA, Bacterial , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Republic of Korea , Seawater/microbiology , Bacterial Typing Techniques , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Nucleic Acid Hybridization , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Ribosomal/genetics
5.
Antonie Van Leeuwenhoek ; 116(12): 1337-1344, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37833447

ABSTRACT

In this study, we reported a Gram-stain-negative, rod-shaped, atrichous, and aerobic bacterial strain named YMD87T, which was isolated from the intertidal zone sediment of Chinese Yellow Sea. Growth of strain YMD87T occurred at 10.0-40.0 °C (optimum, 25-30 °C), pH 4.0-12.0 (optimum, 8.0) and with 0-6.0% (w/v) NaCl (optimum, 0.0-2.0%). Phylogenetic tree analysis based on 16S rRNA gene sequence indicated that strain YMD87T belonged to the genus Tropicibacter and was closely related to Tropicibacter alexandrii LMIT003T (97.2% sequence similarity). Genomic analysis indicated that strain YMD87T contains a circular chromosome of 3,932,460 bp with G + C content of 63.8% and three circular plasmids of 116,492 bp, 49,209 bp and 49,673 bp, with G + C content of 64.3%. Genomic functional analysis revealed that strain YMD87T is potential a novel sulfur-metabolizing bacteria. The predominant respiratory quinone of YMD87T was ubiquinone-10 (Q-10). The major polar lipids of YMD87T contained phosphatidylglycerol, phosphatidylethanolamine, five unidentified lipids, five unidentified phospholipids, phosphatidylcholine, unidentified glycolipid and five unidentified aminolipids. The major fatty acids of strain YMD87T contained C12:1 3-OH, C16:0, and summed feature 8 (C18:1 ω7c or/and C18:1 ω6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD87T represents a novel species of the genus Tropicibacter, and the name Tropicibacter oceani sp. nov is proposed. The type strain is YMD87T (= MCCC 1K08473T = KCTC 92856 T).


Subject(s)
Rhodobacteraceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur , Ubiquinone/chemistry
6.
Arch Microbiol ; 205(10): 331, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698663

ABSTRACT

Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 â„ƒ, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).


Subject(s)
DNA , Rhodobacteraceae , Chromosome Mapping , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification
7.
Article in English | MEDLINE | ID: mdl-37561014

ABSTRACT

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18T, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18T was affiliated to the genus Roseovarius with close relatives Roseovarius carneus LXJ103T (96.8 %) and Roseovarius litorisediminis KCTC 32327T (96.5 %). The complete genome sequence of strain HL-MP18T comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA-DNA hybridization showed that strain HL-MP18T was consistently discriminated from its closely related taxa in the genus Roseovarius. Strain HL-MP18T showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C18 : 1 ω6c and/or C18 : 1 ω7c (49.6 %), C19 : 0 cyclo ω8c (13.5 %), and C16 : 0 (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18T is distinguishable from the recognized species of the genus Roseovarius. Therefore, we propose that strain HL-MP18T represents a novel species belonging to the genus Roseovarius, for which the name Roseovarius pelagicus sp. nov. is proposed. The type strain is HL-MP18T (=KCCM 90405T=JCM 35639T).


Subject(s)
Gram-Negative Anaerobic Bacteria , Polypropylenes , Rhodobacteraceae , Arctic Regions , Rhodobacteraceae/classification , Rhodobacteraceae/enzymology , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Genome, Bacterial/genetics , Gram-Negative Anaerobic Bacteria/classification , Gram-Negative Anaerobic Bacteria/genetics , Gram-Negative Anaerobic Bacteria/isolation & purification , Polypropylenes/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity
8.
Extremophiles ; 27(2): 19, 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37481751

ABSTRACT

Although several species of purple sulfur bacteria inhabit soda lakes, Rhodobaca bogoriensis is the first purple nonsulfur bacterium cultured from such highly alkaline environments. Rhodobaca bogoriensis strain LBB1T was isolated from Lake Bogoria, a soda lake in the African Rift Valley. The phenotype of Rhodobaca bogoriensis is unique among purple bacteria; the organism is alkaliphilic but not halophilic, produces carotenoids absent from other purple nonsulfur bacteria, and is unable to grow autotrophically or fix molecular nitrogen. Here we analyze the draft genome sequence of Rhodobaca bogoriensis to gain further insight into the biology of this extremophilic purple bacterium. The strain LBB1T genome consists of 3.91 Mbp with no plasmids. The genome sequence supports the defining characteristics of strain LBB1T, including its (1) production of a light-harvesting 1-reaction center (LH1-RC) complex but lack of a peripheral (LH2) complex, (2) ability to synthesize unusual carotenoids, (3) capacity for both phototrophic (anoxic/light) and chemotrophic (oxic/dark) energy metabolisms, (4) utilization of a wide variety of organic compounds (including acetate in the absence of a glyoxylate cycle), (5) ability to oxidize both sulfide and thiosulfate despite lacking the capacity for autotrophic growth, and (6) absence of a functional nitrogen-fixation system for diazotrophic growth. The assortment of properties in Rhodobaca bogoriensis has no precedent among phototrophic purple bacteria, and the results are discussed in relation to the organism's soda lake habitat and evolutionary history.


Subject(s)
Lakes , Rhodobacteraceae , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/physiology , Lakes/microbiology , Phylogeny , Energy Metabolism , Carbon/metabolism , Metabolic Networks and Pathways , Acetates/metabolism , Vitamins/metabolism , Polyhydroxyalkanoates/metabolism
9.
Article in English | MEDLINE | ID: mdl-37022765

ABSTRACT

A novel species of the genus Limimaricola, designated ASW11-118T, was isolated from an intertidal sand sample of the Yellow Sea, PR China. Growth of strain ASW11-118T occurred at 10-40 °C (optimum, 28 °C), pH 5.5-8.5 (optimum, pH 7.5) and with 0.5-8.0 % (w/v) NaCl (optimum, 1.5%). Strain ASW11-118T has the highest 16S rRNA gene sequence similarity to Limimaricola cinnabarinus LL-001T (98.8%) and 98.6 % to Limimaricola hongkongensis DSM 17492T. Phylogenetic analysis based on genomic sequences indicated that strain ASW11-118T belongs to the genus Limimaricola. The genome size of strain ASW11-118T was 3.8 Mb and DNA G+C content was 67.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain ASW11-118T and other members of the genus Limimaricola were below 86.6 and 31.3 %, respectively. The predominant respiratory quinone was ubiquinone-10. The predominant cellular fatty acid was C18 : 1 ω7c. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and one unknown aminolipid. On the basis of the data presented, strain ASW11-118T is considered to represent a novel species of the genus Limimaricola, for which the name Limimaricola litoreus sp. nov. is proposed. The type strain is ASW11-118T (=MCCC 1K05581T=KCTC 82494T).


Subject(s)
Phylogeny , Rhodobacteraceae , Sand , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sand/microbiology , Sequence Analysis, DNA , Ubiquinone/chemistry , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification
10.
Article in English | MEDLINE | ID: mdl-36748596

ABSTRACT

Two Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive and non-motile rod-shaped bacteria, strains D2-3T and G9-8T, were isolated from a marine red alga. Both strains contained ubiquinone-10 as the sole isoprenoid quinone. As the major cellular fatty acids (>5.0 %), D2-3T contained C16 : 0, 11-methyl-C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), whereas G9-8T contained C16 : 0, 11-methyl-C18 : 1ω7c, C12 : 1 3-OH, and summed feature 8. The DNA G+C contents of D2-3T and G9-8T were 54.4 % and 56.0 %, respectively. As the major polar lipids, phosphatidylglycerol, diphosphatidylglycerol and unidentified phospholipid, aminolipid and lipid were identified from both strains, and phosphatidylcholine was additionally detected from G9-8T only. The 16S rRNA gene sequence similarity of D2-3T and G9-8T was 98.5 % and their digital DNA-DNA hybridization (DDH) value was 19.1 %. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that D2-3T and G9-8T formed respectively distinct phylogenetic lineages within the genus Octadecabacter. D2-3T and G9-8T were most closely related to Octadecabacter ascidiaceicola RA1-3T and Octadecabacter antarcticus 307T, with 98.9 % and 98.5 % 16S rRNA gene sequence similarities, respectively, and digital DDH values between D2-3T and O. ascidiaceicola and between G9-8T and O. antarcticus were 18.3 % and 19.5 %, respectively. Phenotypic, chemotaxonomic and molecular features support the hypothesis that D2-3T and G9-8T represent two novel species of the genus Octadecabacter, for which the names Octadecabacter algicola sp. nov. and Octadecabacter dasysiphoniae sp. nov. are proposed. The type strains of O. algicola and O. dasysiphoniae are D2-3T (=KACC 22493T =JCM 34969T) and G9-8T (=KACC 22488T =JCM 34973T), respectively.


Subject(s)
Phylogeny , Rhodobacteraceae , Rhodophyta , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids , Rhodophyta/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification
11.
Genes (Basel) ; 13(1)2022 01 15.
Article in English | MEDLINE | ID: mdl-35052488

ABSTRACT

Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).


Subject(s)
Metagenome , Methane/metabolism , Organophosphorus Compounds/metabolism , Rhodobacteraceae/genetics , Saline Waters/chemistry , Salinity , Salt Tolerance , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Saline Waters/analysis
12.
Article in English | MEDLINE | ID: mdl-35099369

ABSTRACT

A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Ferto/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family Rhodobacteraceae. Its closest relatives are Tabrizicola alkalilacus DJCT (96.76% similarity) and Tabrizicola piscis K13M18T (96.76%), followed by Tabrizicola sediminis DRYC-M-16T (96.69 %), Rhodobacter sediminicola JA983T (96.62 %), Tabrizicola aquatica RCRI19T (96.47 %) and Cereibacter johrii JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18-28°C in the presence of 2-4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1 ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family Rhodobacteraceae, for which the name Szabonella alba gen. nov., sp. nov. is proposed.


Subject(s)
Alkalies , Lakes , Phylogeny , Rhodobacteraceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hungary , Lakes/microbiology , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
13.
Elife ; 102021 12 24.
Article in English | MEDLINE | ID: mdl-34951590

ABSTRACT

Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.


Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.


Subject(s)
Ions/metabolism , Metals, Heavy/metabolism , P-type ATPases/chemistry , P-type ATPases/metabolism , Rhodobacteraceae/enzymology , Binding Sites , Biological Transport , Cation Transport Proteins/metabolism , Models, Molecular , P-type ATPases/classification , Protein Conformation , Rhodobacteraceae/classification , Zinc/metabolism
14.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34752209

ABSTRACT

A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, MYP1-1T, was isolated from the intestine of a stalked sea squirt (Styela clava) of the South Sea in the Republic of Korea. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain MYP1-1T clustered with the type strains of Halocynthiibacter species and Pseudohalocynthiibacter aestuariivivens. Strain MYP1-1T exhibited 16S rRNA gene sequence similarity values of 97.0-97.6 % to the type strains of Halocynthiibacter namhaensis, Halocynthiibacter arcticus and P. aestuariivivens. The phylogenetic tree based on genomic sequences showed that strain MYP1-1T formed a distinct branch separating it from the type strains of two Halocynthiibacter species and P. aestuariivivens and other taxa. The DNA G+C content of strain MYP1-1T from its genomic sequence was 55.0 mol%. Strain MYP1-1T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The major polar lipids of strain MYP1-1T were phosphatidylcholine, phosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. The differences in fatty acid and polar lipid profiles and other differential phenotypic properties made it reasonable to distinguish strain MYP1-1T from the genera Halocynthiibacter and Pseudohalocynthiibacter. On the basis of the polyphasic taxonomic investigations, we conclude that strain MYP1-1T constitutes a new genus and species within the class Alphaproteobacteria, for which the name Paenihalocynthiibacter styelae gen. nov., sp. nov. is proposed. The type strain is MYP1-1T (=KCTC 82143T=NBRC 114355T).


Subject(s)
Phylogeny , Rhodobacteraceae , Urochordata , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Seawater , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Urochordata/microbiology
15.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34846282

ABSTRACT

Harmful algal blooms caused by Cochlodinium polykrikoides result in enormous economic damage to the aquaculture industry. Biological control methods have attracted wide attention due to their environmental-friendliness. In this study, a novel algicidal bacterium, designated strain M26A2MT, was determined for its taxonomic position and was evaluated for its potential to mitigate C. polykrikoides blooms. Strain M26A2MT exhibited the highest 16S rRNA gene sequence similarity to the type strains of Planktotalea lamellibrachiae (97.3%), Halocynthiibacter namhaensis (97.2%), Pseudohalocynthiibacter aestuariivivens (96.8%) and Halocynthiibacter arcticus (96.4%) in the family Rhodobacteraceae. The predominant fatty acids were C10 : 0 3-OH and summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Q-10 was the respiratory quinone. Strain M26A2MT exerted significant algicidal activity against C. polykrikoides cells by destroying the membrane integrity and the photosynthetic system. Our findings suggest that strain M26A2MT shows a high potential to control outbreaks of C. polykrikoides. Based on the polyphasic characterization, strain M26A2MT is considered to represent a novel species within a novel genus of the family Rhodobacteraceae, for which the name Cochlodiniinecator piscidefendens gen. nov., sp. nov. is proposed. The type strain is M26A2MT (=KCTC 82083T=JCM 34119T).


Subject(s)
Dinoflagellida , Phylogeny , Rhodobacteraceae , Bacterial Typing Techniques , Base Composition , Biological Control Agents , DNA, Bacterial/genetics , Fatty Acids/chemistry , Herbicides , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Seawater , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
16.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34662266

ABSTRACT

A Gram-stain-negative, non-motile, ellipsoid bacterium, designated HB182678T, was isolated from brown alga collected from Hainan province, PR China. Growth was observed at 10-50 °C (optimum 37-40 °C), at pH 6-10 (optimum pH 8) and in the presence of 0.5-13% (w/v) NaCl (optimum, 2-4%). The predominant isoprenoid quinone was Q-10 and the major fatty acids were C18 : 1 ω7c, C16 : 0, C18 : 0 and C19 : 0 cyclo ω8c. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, an unidentified phospholipid, two unidentified glycolipids and three unidentified aminophospholipids. The size of the draft genome was 4.40 Mbp with G+C content 68.8 mol%. Phylogenetic analysis of 16S rRNA gene sequence indicated that strain HB182678T belonged to the genus Mangrovicoccus, and the closest phylogenetically related species was Mangrovicoccus ximenensis T1lg56T (with the similarity of 96.3%). Whole genome average nucleotide identity (ANI) value between them was 84.3% and in silico DNA-DNA hybridization value was 27.2%. The combined phylogenetic relatedness, phenotypic and genotypic features supported the conclusion that strain HB182678T represents a novel species of the genus Mangrovicoccus, for which the name Mangrovicoccus algicola sp. nov. is proposed. The type strain is HB182678T (=MCCC 1K04624T=KCTC 82318T).


Subject(s)
Phaeophyceae/microbiology , Phylogeny , Polysaccharide-Lyases , Rhodobacteraceae/classification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/enzymology , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
17.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34596505

ABSTRACT

A Gram-stain-negative, aerobic, short-rod-shaped bacterium, designated strain CBS1P-1T, was isolated from a surface-sterilized bark of Aegiceras corniculatum. Growth of strain CBS1P-1T was observed with between 0 and 12.0 % (w/v) NaCl (optimally with 5.0 %) and at between pH 6.0-9.0. It grew at temperatures between 25-37 °C (optimum, 30 °C). Chemotaxonomic analysis showed that ubiquinone-10 was the respiratory quinone. The lipids comprised diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, an unidentified phospholipid and an unidentified aminolipid. The major fatty acids of strain CBS1P-1T were C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CBS1P-1T was most related to Pseudooceanicola antarcticus CGMCC 1.12662T with a sequence similarity of 96.5 %. The average nucleotide identity and digital DNA-DNA hybridization values between strain CBS1P-1T and P. antarcticus 1.12662T were 77.5 and 21.1 %, respectively. The G+C content of the genomic DNA was 67.3 mol%. Based on phylogenetic, chemotaxonomic and phenotypic data, strain CBS1P-1T is considered to represent a novel species of the genus Pseudooceanicola, for which the name Pseudooceanicola endophyticus is proposed. The type strain is CBS1P-1T (=KCTC 62836T=CGMCC 1.13743T).


Subject(s)
Phylogeny , Plant Bark/microbiology , Primulaceae , Rhodobacteraceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Primulaceae/microbiology , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA
18.
Article in English | MEDLINE | ID: mdl-34520339

ABSTRACT

A Gram-stain-negative, light pink-coloured, rod-shaped, flagellated and facultative anaerobic bacterial strain, designated MT2928T, was isolated from deep-sea sediment collected from the Mariana Trench. Growth of strain MT2928T occurred optimally at 28 °C, pH 8.0-9.0 and in the presence of 1.0-2.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MT2928T belongs to the genus Pontivivens and has the highest sequence similarity to Pontivivens insulae GYSW-23T (96.6 %). Genomic analysis indicated that strain MT2928T contains a circular chromosome of 4 199 362 bp with G+C content of 67.2 mol%. The strain did not produce bacteriochlorophyll a, but produced carotenoid. The predominant respiratory quinone of MT2928T was ubiquinone-10. The polar lipids of MT2928T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified lipids and two unidentified phospholipids. The major fatty acids of strain MT2928T contained summed feature 8 (C18 : 1 ω7c or/and C18 : 1 ω6c), C18 : 0 and summed feature 2 (iso-C16 : 1 I and/or C14 : 0 3-OH). On the basis of phylogenetic, physiological, biochemical and other phenotypic properties, strain MT2928T represents a novel species of the genus Pontivivens, and the name Pontivivens ytuae sp. nov. is proposed with the type species MT2928T (=MCCC 1K05575T=JCM 34320T).


Subject(s)
Phylogeny , Rhodobacteraceae/classification , Seawater , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Pacific Ocean , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/isolation & purification , Seawater/microbiology , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
19.
Article in English | MEDLINE | ID: mdl-34370661

ABSTRACT

Two bacterial strains, designated SS33T and Y03T, were isolated from marine sediment and marine red alga collected on the coast of Weihai, PR China. Based on the results of 16S rRNA gene sequence analysis, strain SS33T was found to be closely related to Primorskyibacter marinus PX7T, Pelagivirga dicentrarchi YLY04T, Palleronia marisminoris DSM 26347T and Maribius pontilimi GH1-23T with 94.8, 94.6, 94.5 and 94.5 % sequence similarity; strain Y03T was found to be closest to Flavivirga aquimarina EC2D5T, Flavivirga eckloniae ECD14T and Flavivirga amylovorans JC2681T with 96.4, 96.1 and 96.0 % sequence similarity. Strain SS33T grew at 4-37 °C (optimum, 33 °C), at pH 6.0-9.5 (optimum, pH 7.5-8.0) and in the presence of 0-10 % (w/v) NaCl (optimum, 3.0 %). Chemotaxonomic analysis of strain SS33T showed that the predominant respiratory quinone was ubiquinone-10. The major fatty acids (>10.0 %) included C18 : 1 ω7c and C16 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid, one unidentified glycolipid, one unidentified polar lipid and two unidentified aminolipids. Strain Y03T grew at 15-40 °C (optimum, 28 °C), at pH 6.5-8.0 (optimum, pH 7.0) and in the presence of 0.5-9.0 % (w/v) NaCl (optimum, 2.0%). Chemotaxonomic analysis showed that the predominant respiratory quinone was menaquinone-6. The major fatty acids (>10.0 %) included iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids included phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid and four unidentified polar lipids. Based on the polyphasic data, strain SS33T is considered to represent a novel species of the genus Palleronia, for which the name Palleronia sediminis sp. nov. is proposed, with the type strain SS33T (=KCTC 62986T=MCCC 1H00387T). Strain Y03T is considered to represent a novel species of the genus Flavivirga, for which the name Flavivirga algicola sp. nov. is proposed, with the type strain Y03T (=KCTC 72001T=MCCC 1H00386T).


Subject(s)
Flavobacteriaceae , Geologic Sediments/microbiology , Phylogeny , Rhodobacteraceae/classification , Rhodophyta/microbiology , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/classification , Flavobacteriaceae/isolation & purification , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
20.
Article in English | MEDLINE | ID: mdl-34270400

ABSTRACT

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain designated as 6D45AT was isolated from mangrove soil and characterized using a polyphasic taxonomic approach. Strain 6D45AT was found to grow at 10-37 °C (optimum, 28 °C), at pH 6.0-9.0 (optimum, 7.0) and in 0-5 % (w/v) NaCl (optimum, 2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 6D45AT fell into the genus Salipiger and shared 99.1 % identity with the closest type strain Salipiger pacificus CGMCC 1.3455T and less than 97.2 % identity with other type strains of this genus. The 34.8 % digital DNA-DNA hybridization (dDDH) and 88.3 % average nucleotide identity (ANI) values between strain 6D45AT and the closest relative above were well below recognized thresholds of 70 % DDH and 95-96 % ANI for species definition, implying that strain 6D45AT should represent a novel genospecies. The phylogenomic analysis indicated that strain 6D45AT formed an independent branch distinct from reference strains. The predominant cellular fatty acid of strain 6D45AT was summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c, 66.9 %); the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unidentified glycolipids and an unknown lipid; the respiratory quinone was Q-10. The genomic DNA G+C content was 66.5 mol %. Based on the phenotypic and genotypic characteristics, strain 6D45AT is concluded to represent a novel species of the genus Salipiger, for which the name Salipiger mangrovisoli sp. nov., is proposed. The type strain of the species is 6D45AT (=GDMCC 1.1960T=KCTC 82334T). We also propose the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. nov. and 'Pelagibaca abyssi' as a species of the genus Salipiger.


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Soil Microbiology , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...