Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 144(3): 341-347, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32248389

ABSTRACT

Spontaneous photosynthetic mutants of the aerobic anoxygenic phototrophic bacterium Roseicyclus mahoneyensis, strain ML6 have been identified based on phenotypic differences and spectrophotometric analysis. ML6 contains a reaction centre (RC) with absorption peaks at 755, 800, and 870 nm, light harvesting (LH) complex 1 at 870 nm, and monomodal LH2 at 805 nm; the mutant ML6(B) has only the LH2; ML6(DB) has also lost the LH1; in ML6(BN9O), the LH2 is absent and concentrations of LH1 and RC are much lower than in the wild type. RCs were isolated and purified from ML6 and ML6(BN9O); LH1-RC from ML6; and LH2 from ML6, ML6(B), and ML6(DB). All protein subunits composing the complexes were found to be of typical size. Flash-induced difference spectra revealed ML6 has a fully functional photosynthetic apparatus under aerobic and microaerophilic conditions, and as is typical for AAP, there is no photosynthetic activity anaerobically. ML6(BN9O), while also functional photosynthetically aerobically, showed lower rates due to the lack of LH2 and decreased concentrations of LH1 and RC. ML6(B) and ML6(DB) showed no photoinduced electron transport. Action spectra of light-mediated reactions were also performed on ML6 and ML6(BN9O) to reveal that the majority of carotenoids are not involved in light harvesting. Finally, redox titrations were carried out on membranes of ML6 and ML6(BN9O) to confirm that midpoint redox potentials of the QA, RC-bound cytochrome, and P+ were similar in both strains. QA midpoint potential is + 65 mV, cytochrome is + 245 mV, and P+ is + 430 mV.


Subject(s)
Electron Transport/radiation effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacteraceae/physiology , Carotenoids/metabolism , Cytochromes/metabolism , Light-Harvesting Protein Complexes/metabolism , Mutation , Oxidation-Reduction , Protein Subunits , Rhodobacteraceae/genetics , Rhodobacteraceae/radiation effects
2.
Environ Microbiol ; 19(7): 2645-2660, 2017 07.
Article in English | MEDLINE | ID: mdl-28371065

ABSTRACT

The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12T during transition from heterotrophy to photoheterotrophy (growth on succinate). Growth in light was characterized by reduced respiration, a decreased metabolic flux through the tricarboxylic acid (TCA) cycle and the assimilation of CO2 via an enhanced flux through the ethylmalonyl-CoA (EMC) pathway, which was shown to be connected to the serine metabolism. Adaptation to photoheterotrophy is mainly characterized by metabolic reactions caused by a surplus of reducing potential and might depend on genes located in one operon, encoding branching point enzymes of the EMC pathway, serine metabolism and the TCA cycle.


Subject(s)
Acyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Rhodobacteraceae/metabolism , Acyl Coenzyme A/genetics , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citric Acid Cycle , Light , Photosynthesis , Rhodobacteraceae/genetics , Rhodobacteraceae/radiation effects , Transcriptome
3.
PLoS One ; 8(12): e83960, 2013.
Article in English | MEDLINE | ID: mdl-24386315

ABSTRACT

Aerobic anoxygenic phototrophs (AAPs) as being photoheterotrophs require organic substrates for growth and use light as a supplementary energy source under oxic conditions. We hypothesized that AAPs benefit from light particularly under carbon and electron donor limitation. The effect of light was determined in long-term starvation experiments with Dinoroseobacter shibae DFL 12(T) in both complex marine broth and defined minimal medium with succinate as the sole carbon source. The cells were starved over six months under three conditions: continuous darkness (DD), continuous light (LL), and light/dark cycle (LD, 12 h/12 h, 12 µmol photons m(-2) s(-1)). LD starvation at low light intensity resulted in 10-fold higher total cell and viable counts, and higher bacteriochlorophyll a and polyhydroxyalkanoate contents. This coincided with better physiological fitness as determined by respiration rates, proton translocation and ATP concentrations. In contrast, LD starvation at high light intensity (>22 µmol photons m(-2) s(-1), LD conditions) resulted in decreasing cell survival rates but increasing carotenoid concentrations, indicating a photo-protective response. Cells grown in complex medium survived longer starvation (more than 20 weeks) than those grown in minimal medium. Our experiments show that D. shibae benefits from the light and dark cycle, particularly during starvation.


Subject(s)
Culture Media/chemistry , Light , Rhodobacteraceae/cytology , Rhodobacteraceae/radiation effects , Adaptation, Physiological/radiation effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Rhodobacteraceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...