Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
PeerJ ; 12: e17435, 2024.
Article in English | MEDLINE | ID: mdl-38827309

ABSTRACT

Background: This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods: RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result: A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion: The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Plant Proteins , Rhododendron , Stress, Physiological , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological/genetics , Rhododendron/genetics , Rhododendron/metabolism , Rhododendron/chemistry , Multigene Family/genetics , Gene Expression Profiling , Phylogeny , Genome, Plant/genetics
2.
PeerJ ; 12: e17325, 2024.
Article in English | MEDLINE | ID: mdl-38832044

ABSTRACT

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Subject(s)
Flavonoids , Flowers , Rhododendron , Rhododendron/metabolism , Rhododendron/genetics , Rhododendron/growth & development , Flowers/metabolism , Flowers/growth & development , Flowers/genetics , Flavonoids/metabolism , Flavonoids/analysis
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791294

ABSTRACT

With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.


Subject(s)
Abscisic Acid , Flavonoids , Gene Expression Regulation, Plant , Rhododendron , Ultraviolet Rays , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Flavonoids/metabolism , Rhododendron/metabolism , Rhododendron/genetics , Gene Expression Regulation, Plant/drug effects , Chlorophyll/metabolism
4.
Biol Direct ; 19(1): 40, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807240

ABSTRACT

Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.


Subject(s)
Hydroxybenzoates , Plant Growth Regulators , Rhododendron , Ultraviolet Rays , Hydroxybenzoates/metabolism , Plant Growth Regulators/metabolism , Rhododendron/metabolism , Stress, Physiological , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/drug effects , Proteomics , Signal Transduction/radiation effects , Metabolomics/methods , Phosphorylation
5.
Hereditas ; 161(1): 15, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702800

ABSTRACT

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Subject(s)
Plant Proteins , Proteomics , Rhododendron , Ultraviolet Rays , Acetylation , Plant Proteins/metabolism , Plant Proteins/genetics , Rhododendron/genetics , Rhododendron/metabolism , Rhododendron/physiology , Stress, Physiological , Metabolomics , Protein Processing, Post-Translational , Gene Expression Regulation, Plant , Starch/metabolism , Photosynthesis
6.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675642

ABSTRACT

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Subject(s)
Acyltransferases , Chalcones , Flavonoids , Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Rhododendron , Acyltransferases/genetics , Acyltransferases/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Rhododendron/genetics , Rhododendron/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Cloning, Molecular , Mutation
7.
Planta ; 259(5): 104, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551672

ABSTRACT

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Subject(s)
MicroRNAs , Rhododendron , Transcriptome/genetics , Rhododendron/genetics , Rhododendron/metabolism , Ecosystem , Heat-Shock Response/genetics , MicroRNAs/genetics , Gene Expression Profiling
8.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37930230

ABSTRACT

Rhododendron species provide excellent ornamental use worldwide, yet heat stress (HS) is one of the major threats to their cultivation. However, the intricate mechanisms underlying the photochemical and transcriptional regulations associated with the heat stress response in Rhododendron remain relatively unexplored. In this study, the analyses of morphological characteristics and chlorophyll fluorescence (ChlF) kinetics showed that HS (40 °C/35 °C) had a notable impact on both the donor's and acceptor's sides of photosystem II (PSII), resulting in reduced PSII activity and electron transfer capacity. The gradual recovery of plants observed following a 5-day period of culture under normal conditions indicates the reversible nature of the HS impact on Rhododendron × pulchrum. Analysis of transcriptome data unveiled noteworthy trends: four genes associated with photosynthesis-antenna protein synthesis (LHCb1, LHCb2 and LHCb3) and the antioxidant system (glutamate-cysteine ligase) experienced significant down-regulation in the leaves of R. × pulchrum during HS. Conversely, aseorbate peroxidase and glutathione S-transferase TAU 8 demonstrated an up-regulated pattern. Furthermore, six down-regulated genes (phos-phoenolpyruvate carboxylase 4, sedoheptulose-bisphosphatase, ribose-5-phosphate isomerase 2, high cyclic electron flow 1, beta glucosidase 32 and starch synthase 2) and two up-regulated genes (beta glucosidase 2 and UDP-glucose pyrophosphorylase 2) implicated in photosynthetic carbon fixation and starch/sucrose metabolism were identified during the recovery process. To augment these insights, a weighted gene co-expression network analysis yielded a co-expression network, pinpointing the hub genes correlated with ChlF dynamics' variation trends. The cumulative results showed that HS inhibited the synthesis of photosynthesis-antenna proteins in R. × pulchrum leaves. This disruption subsequently led to diminished photochemical activities in both PSII and PSI, albeit with PSI exhibiting heightened thermostability. Depending on the regulation of the reactive oxygen species scavenging system and heat dissipation, photoprotection sustained the recoverability of R. × pulchrum to HS.


Subject(s)
Cellulases , Rhododendron , Rhododendron/genetics , Rhododendron/metabolism , Chlorophyll/metabolism , Transcriptome , Photosynthesis/physiology , Plant Leaves/physiology , Heat-Shock Response , Photosystem II Protein Complex , Cellulases/genetics , Cellulases/metabolism
9.
Sci Rep ; 13(1): 17912, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864069

ABSTRACT

Rhododendron pulchrum sweet, a member of the Ericaceae family possessing valuable horticultural properties, is widely distributed in the temperate regions. Though serving as bioindicator of metal pollution, the molecular mechanism regulating flowering in R. pulchrum is very limited. Illumina sequencing was performed to identify critical miRNAs in the synthesis of flavonoids at different developmental stages. Totally, 722 miRNAs belonging to 104 families were screened, and 84 novel mature miRNA sequences were predicted. The miR166, miR156, and miR167-1 families were dominant. In particular, 126 miRNAs were significantly differentially expressed among four different flowering stages. Totally, 593 genes were differentially regulated by miRNAs during the flower development process, which were mostly involved in "metabolic pathways", "plant hormone signal transduction", and "mitosis and regulation of biosynthetic processes". In pigment biosynthesis and signal transduction processes, gra-miR750 significantly regulated the expression of flavonoid 3',5'-hydroxylase; aof-miR171a, aof-miR171b, aof-miR171c, cas-miR171a-3p, and cas-miR171c-3p could regulate the expression of DELLA protein; aof-miR390, aof-miR396b, ath-miR3932b-5p, cas-miR171a-3p, aof-miR171a, and aof-miR171b regulated BAK1 expression. This research showed great potentials for genetic improvement of flower color traits for R. pulchrum and other Rhododendron species.


Subject(s)
MicroRNAs , Rhododendron , Humans , Rhododendron/genetics , Rhododendron/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sequence Analysis, RNA , Flowers , Genes, Plant , Gene Expression Regulation, Plant , RNA, Plant/genetics , High-Throughput Nucleotide Sequencing
10.
Genes (Basel) ; 14(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37372333

ABSTRACT

The influence of UV-B stress on the growth, development, and metabolism of alpine plants, such as the damage to DNA macromolecules, the decline in photosynthetic rate, and changes in growth, development, and morphology cannot be ignored. As an endogenous signal molecule, ABA demonstrates a wide range of responses to UV-B radiation, low temperature, drought, and other stresses. The typical effect of ABA on leaves is to reduce the loss of transpiration by closing the stomata, which helps plants resist abiotic and biological stress. The Changbai Mountains have a harsh environment, with low temperatures and thin air, so Rhododendron chrysanthum (R. chrysanthum) seedlings growing in the Changbai Mountains can be an important research object. In this study, a combination of physiological, phosphorylated proteomic, and transcriptomic approaches was used to investigate the molecular mechanisms by which abiotic stress leads to the phosphorylation of proteins in the ABA signaling pathway, and thereby mitigates UV-B radiation to R. chrysanthum. The experimental results show that a total of 12,289 differentially expressed genes and 109 differentially phosphorylated proteins were detected after UV-B stress in R. chrysanthum, mainly concentrated in plant hormone signaling pathways. Plants were treated with ABA prior to exposure to UV-B stress, and the results showed that ABA mitigated stomatal changes in plants, thus confirming the key role of endogenous ABA in plant adaptation to UV-B. We present a model that suggests a multifaceted R. chrysanthum response to UV-B stress, providing a theoretical basis for further elaboration of the mechanism of ABA signal transduction regulating stomata to resist UV-B radiation.


Subject(s)
Rhododendron , Rhododendron/genetics , Rhododendron/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Proteomics , Plant Stomata/metabolism , Plants/genetics , Signal Transduction , Plant Leaves/genetics , Plant Leaves/metabolism
11.
Cells ; 12(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36766818

ABSTRACT

Rhododendron chrysanthum (Rhododendron chrysanthum Pall.), an alpine plant, has developed UV-B resistance mechanisms and has grown to be an important plant resource with the responsive capacity of UV-B stress. Our study uses acetylated proteomics and proteome analysis, together with physiological measurement, to show the Rhododendron chrysanthum seedling's reaction to UV-B stress. Following a 2-day, 8-h radiation therapy, 807 significantly altered proteins and 685 significantly altered acetylated proteins were discovered. Significantly altered proteins and acetylated proteins, according to COG analysis, were mostly engaged in post-translational modification, protein turnover, and chaperone under UV-B stress. It indicates that protein acetylation modification plays an important role in plant resistance to UV-B. The experimental results show that photosynthesis was inhibited under UV-B stress, but some photosynthetic proteins will undergo acetylation modification, which can alleviate the UV-B damage of plants to a certain extent. These results will serve as the basis for more research into the intricate molecular mechanisms underlying plant UV-B adaptation.


Subject(s)
Photosystem II Protein Complex , Rhododendron , Photosystem II Protein Complex/metabolism , Ultraviolet Rays , Rhododendron/metabolism , Proteomics , Photosynthesis , Plants/metabolism
12.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 653-669, 2023 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-36847096

ABSTRACT

Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and ß-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.


Subject(s)
Arabidopsis , Rhododendron , Arabidopsis/genetics , Arabidopsis/metabolism , Rhododendron/genetics , Rhododendron/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Phylogeny , Flavonoids/genetics , Flavonoids/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Gene ; 857: 147176, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36627095

ABSTRACT

Chalcone synthase (CHS) plays a vital role in anthocyanin biosynthesis pathway, which is associated with petal color of flower. To date, lots of CHS genes have been obtained from plants, while few were from Rhododendron genus. In this study we got a new CHS gene named RhCHS (MW358095) from Rhododendron × hybridum Hort. It had a 2040 bp coding region consisting of two exons and one intron. By using the deduced RhCHS protein as a query sequence, 15 CHS homologous family genes with sequence similarity from 60% to 98%, designated as RgCHS-D(x), were retrieved from the genome assembly of Rhododendron griersonianum (RGv1.1) by TBlastN. 12 CHS family genes were found locating in No.9 chromosome arranged in clusters, while only 3 of them exhibited in No.1, 2, and 8 chromosomes, respectively. The results revealed gene duplication of CHS in evolutionary process. Multiple alignment of the deduced amino acid sequence of RhCHS showed high similarity of the active site, the catalytic residue, and the signature motif, the conserved characteristics of which were also exhibited in the tertiary structure prediction of the RhCHS, as well as the phylogenetic tree, all these demonstrated the RhCHS belonging to the type III PKS superfamily. HPLC-MS/MS of flower petals detected the total concentration of CC, DC, and PelC. These anthocyanidins showed an overall increasing trend during the flowering period and reached the peak in the full-blooming stage, which was consistence with the changeable rule of RhCHS expression level. The promoter, which was 1507 bp exhibiting high ß-glucuronidase (GUS) staining activity, was predicted containing many cis-acting elements, especially light and transcription factor such as bHLH, MYB, WRKY, Dof, and ERF. In short, this study may provide the help to Rhododendron × hybridum Hort. not only in the mechanism research of petals color exhibition, but also in molecular breeding of CHS practice value.


Subject(s)
Rhododendron , Rhododendron/genetics , Rhododendron/metabolism , Phylogeny , Tandem Mass Spectrometry , Acyltransferases/genetics , Gene Expression Regulation, Plant
14.
Phytomedicine ; 111: 154666, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701996

ABSTRACT

BACKGROUND: We previously found that total flavones of Rhododendron (TFR) protected against the cerebral ischemia/reperfusion (I/R) injury. But the detailed mechanism is not clear. Recent research revealed that reactive astrocytes were divided into A1 and A2 phenotypes for their morphological and functional remodeling and neurotoxic- vs-neuroprotective effect on the injury of the central nervous system (CNS). PURPOSE: The present study was undertaken to explore the role and mechanism of TFR on the phenotypic change of astrocytes following cerebral I/R in vivo and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. STUDY DESIGN AND METHODS: We tested the expression of astrocytes marker glial fibrillary acidic protein (GFAP), A1 astrocytes marker C3 protein and A2 astrocytes marker S100a10, as well as the BrdU/GFAP-positive cells, GFAP/S100a10-positive cells and GFAP/C3-positive cells in mice hippocampal tissues to evaluate the phenotypic change of astrocytes. Besides, we assessed the change of astrocyte phenotypes following OGD/R in vitro. RESULTS: We found that mice cerebral I/R promoted the astrocytes proliferation of both A1 and A2 phenotypes in hippocampal tissues. While treatment with TFR could promote the proliferation of A2 astrocytes but inhibit the A1 astrocytes proliferation in mice hippocampal tissues, suggesting that TFR could accelerate the astrocytes transformation into A2 subtype following cerebral I/R. Whereas, in OGD/R model of astrocytes, we found that TFR inhibited the proliferation of both A1 and A2 astrocytes. Besides, we found that TFR could up-regulate the release of cystathionine ß-synthase (CBS)-produced hydrogen sulfide (H2S) and inhibit RhoA/Rho kinase pathway, and revealed that the inhibitory effect of TFR on astrocytes proliferation could be blocked by aminooxyacetic acid (AOAA), an CBS inhibitor. Furthermore, TFR could ameliorate the mice cerebral I/R injury and the OGD/R-induced astrocytic damage. CONCLUSION: These findings suggested that TFR could affect the transformation of astrocytes subtypes following cerebral I/R, which may be related to up-regulation of CBS-produced H2S and subsequent inhibition of RhoA/ROCK pathway.


Subject(s)
Brain Ischemia , Flavones , Rhododendron , Animals , Mice , Astrocytes , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/pharmacology , Flavones/pharmacology , Oxygen/metabolism , Rhododendron/metabolism
15.
J Biomol Struct Dyn ; 41(4): 1403-1413, 2023 03.
Article in English | MEDLINE | ID: mdl-34961411

ABSTRACT

Phytochemicals with potential to competitively bind to the host receptors or inhibit SARS-CoV-2 replication, may prove to be useful as adjunct therapeutics for COVID-19. We profiled and investigated the phytochemicals of Rhododendron arboreum petals sourced from Himalayan flora, undertook in vitro studies and found it as a promising candidate against SARS-CoV-2. The phytochemicals were reported in various scientific investigations to act against a range of virus in vitro and in vivo, which prompted us to test against SARS-CoV-2. In vitro assays of R. arboreum petals hot aqueous extract confirmed dose dependent reduction in SARS-CoV-2 viral load in infected Vero E6 cells (80% inhibition at 1 mg/ml; IC50 = 173 µg/ml) and phytochemicals profiled were subjected to molecular docking studies against SARS CoV-2 target proteins. The molecules 5-O-Feruloyl-quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed promising binding affinity with SARS-CoV-2 Main protease (MPro; PDB ID: 6LU7; responsible for viral replication) and Human Angiotensin Converting Enzyme-2 (ACE2; PDB ID: 1R4L; mediate viral entry in the host). Molecular dynamics (MD) simulation of 5-O-Feruloyl-quinic acid, an abundant molecule in the extract complexed with the target proteins showed stable interactions. Taken together, the phytochemical profiling, in silico analysis and in vitro anti-viral assay revealed that the petals extract act upon MPro and may be inhibiting SARS-CoV-2 replication. This is the first report highlighting R. arboreum petals as a reservoir of antiviral phytochemicals with potential anti-SARS-CoV-2 activity using an in vitro system.


Subject(s)
COVID-19 , Rhododendron , Humans , SARS-CoV-2/metabolism , Rhododendron/metabolism , Molecular Docking Simulation , Quinic Acid , Binding Sites , Viral Nonstructural Proteins/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Phytochemicals/pharmacology , Phytochemicals/chemistry
16.
Chinese Journal of Biotechnology ; (12): 653-669, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970398

ABSTRACT

Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.


Subject(s)
Arabidopsis/metabolism , Rhododendron/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Phylogeny , Flavonoids/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism
17.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3740-3756, 2022 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-36305407

ABSTRACT

Terpene synthase (TPS) plays important roles in the synthesis of terpenoids which are the main fragrances in Rhododendron flowers. To understand the function of TPS genes in terpenoid metabolism in relation to flower aroma formation, we identified all TPS gene family members in Rhododendron by analyzing its genome database. We then used a transcriptomic approach to analyze the differential gene expression patterns of TPS gene family members in the scented flower Rhododendron fortunei compared to the non-scented flower Rhododendron 'Nova Zembla'. The contents of terpenoid compounds in petals of the above two Rhododendron species at different developmental stages were also measured by using qRT-PCR and head space-solid phase micro-extraction combined with gas chromatography-mass spectrometry. Our results showed that a total of 47 RsTPS members, with individual lengths ranged from 591 to 2 634 bp, were identified in the Rhododendron genome. The number of exons in RsTPS gene ranged from 3 to 12, while the length of each protein encoded ranged from 196 to 877 amino acids. Members of the RsTPS family are mainly distributed in the chloroplast and cytoplasm. Phylogenetic analysis showed that RsTPS genes can be clustered into 5 subgroups. Seven gene family members can be functionally annotated as TPS gene family since they were temporally and spatially expressed as shown in the transcriptome data. Notably, TPS1, TPS10, TPS12 and TPS13 in Rhododendron fortunei were expressed highly in flower buds reached the peak in the full blossoming. Correlation analysis between gene expression levels and terpenoid content indicates that the expression levels of TPS1, TPS4, TPS9, TPS10, TPS12 and TPS13 were positively correlated with the content of terpenoids in the petals of R. fortunei at all flower developmental stages, suggesting that these six genes might be involved in the aroma formation in R. fortunei.


Subject(s)
Rhododendron , Gene Expression Regulation, Plant , Phylogeny , Rhododendron/genetics , Rhododendron/chemistry , Rhododendron/metabolism , Terpenes/metabolism
18.
BMC Plant Biol ; 22(1): 401, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974307

ABSTRACT

BACKGROUND: Color is the major ornamental feature of the Rhododendron genus, and it is related to the contents of flavonoid in petals. However, the regulatory mechanism of flavonoid biosynthesis in Rhododendron pulchrum remains unknown. The transcriptome and metabolome analysis of Rhododendron pulchrum with white, pink and purple color in this study aimed to reveal the mechanism of flavonoid biosynthesis and to provide insight for improving the petal color. RESULTS: Flavonoids and flavonols are the major components of flavonoid metabolites in R.pulchrum, such as laricitrin, apigenin, tricin, luteolin, isoorientin, isoscutellarein, diosmetin and their glycosides derivatives. With transcriptome and metabolome analysis, we found CHS, FLS, F3'H, F3'5'H, DFR, ANS, GT, FNS, IFR and FAOMT genes showed significantly differential expression in cultivar 'Zihe'. FNS and IFR were discovered to be associated with coloration in R.pulchrum for the first time. The FNS gene existed in the form of FNSI. The IFR gene and its related metabolites of medicarpin derivatives were highly expressed in purple petal. In cultivar 'Fenhe', up-regulation of F3'H and F3'5'H and down-regulation of 4CL, DFR, ANS, and GT were associated with pink coloration. With the transcription factor analysis, a subfamily of DREBs was found to be specifically enriched in pink petals. This suggested that the DREB family play an important role in pink coloration. In cultivars 'Baihe', flavonoid biosynthesis was inhibited by low expression of CHS, while pigment accumulation was inhibited by low expression of F3'5'H, DFR, and GT, which led to a white coloration. CONCLUSIONS: By analyzing the transcriptome and metabolome of R.pulchrum, principal differential expression genes and metabolites of flavonoid biosynthesis pathway were identified. Many novel metabolites, genes, and transcription factors associated with coloration have been discovered. To reveal the mechanism of the coloration of different petals, a model of the flavonoid biosynthesis pathway of R.pulchrum was constructed. These results provide in depth information regarding the coloration of the petals and the flavonoid metabolism of R.pulcherum. The study of transcriptome and metabolome profiling gains insight for further genetic improvement in Rhododendron.


Subject(s)
Rhododendron , Transcriptome , Anthocyanins/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Metabolome , Plant Proteins/genetics , Rhododendron/genetics , Rhododendron/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Phytomedicine ; 104: 154270, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35760023

ABSTRACT

BACKGROUND: Rhododendron nivale Hook. f (R.n), one of the four Manna Stash used in Tibetan medicine to delay aging, possesses anti-aging pharmacological activity. However, which R.n ingredients contain anti-aging properties and the underlying mechanisms involved are unclear. HYPOTHESIS/PURPOSE: Based on interactions between gut microbiota and natural medicines and the important role of gut microbiota in anti-aging, the study investigated the hypothesis that R.n possesses anti-aging properties and the interaction of gut microbiota with R.n is responsible for its anti-aging effects. STUDY DESIGN: The primary active ingredients of R.n and their target function and pathway enrichment were explored. An aging mouse model was used to clarify the underlying anti-aging mechanisms of R.n. METHODS: Chromatography, spectroscopy, nuclear magnetic technology, and pharmacology were used to reveal the major active ingredients of ethanol extract residues of R.n (RNEA). The target function and pathway enrichment of these active ingredients were explored. Plasma metabolomics coupled with intestinal flora evaluation and bioinformatics analysis was used to clarify the underlying anti-aging mechanisms of RNEA. RESULTS: Myricetin-3-ß-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-ß-D-galactoside, and diplomorphanin B were separated and identified from RNEA. The network pharmacology study revealed that the active ingredients' target function and pathway enrichment focused mainly on the glutathione antioxidant system. In a D-galactose-induced mouse model of aging, RNEA was shown to possess suitable anti-aging pharmacological activity, as indicated by the amelioration of memory loss and weakened superoxide dismutase and glutathione peroxidase activities. Plasma metabolomics coupled with intestinal flora examination and bioinformatics analysis revealed that RNEA could regulate the expression of glutathione-related enzymes and ameliorate D-galactose-induced imbalances in methionine, glycine, and serine, and betaine and galactose metabolism. The results showed that RNEA reshaped the disordered intestinal flora and mitigated the D-galactose-mediated decline in glutathione oxidase expression, further confirming that the anti-aging effect of RNEA was closely related to regulation of the glutathione antioxidant system. CONCLUSION: RNEA, consisting of myricetin-3-ß-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-ß-D-galactoside, and diplomorphanin B, possesses anti-aging activity. The anti-aging effect of RNEA might be due to reshaping intestinal flora homeostasis, increasing the expression of glutathione peroxidase 4 in the intestines and liver, enhancing glutathione peroxidase activity, and reinforcing the glutathione antioxidant system.


Subject(s)
Gastrointestinal Microbiome , Methyl Ethers , Rhododendron , Aging , Animals , Antioxidants/pharmacology , Disease Models, Animal , Flavonoids/pharmacology , Galactose/pharmacology , Galactosides/pharmacology , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Methyl Ethers/pharmacology , Mice , Oxidative Stress , Rhododendron/metabolism
20.
Plant Cell Environ ; 45(7): 2093-2108, 2022 07.
Article in English | MEDLINE | ID: mdl-35357711

ABSTRACT

Light stress is one of the important stresses for winter survival in evergreens, especially for plants with broad leaves, like evergreen rhododendrons. Photoprotection has been shown to upregulate dramatically in rhododendrons during winter, but whether it directly contributes to enhancing the freezing tolerance is still unknown. In this study, we found that the expression and circadian rhythm of an early light-induced protein (ELIP)-RhELIP3-which exerts photoprotection in Rhododendron 'Elsie Lee', could be impacted by both photoperiod and low temperature, with low temperature being the predominant inducer. Arabidopsis overexpressing RhELIP3 displayed significantly stronger freezing tolerance and better photosystem II function after a 3-day recovery from freezing treatment. Moreover, RhHY5 binds with the RhELIP3 promoter to activate its expression. Arabidopsis overexpressing RhHY5 exhibited stronger freezing tolerance and better photosystem II function. AtELIP1 and AtELIP2 were significantly induced in RhHY5-overexpressed Arabidopsis at low temperatures. We also discovered that RhBBX24 binds directly to RhELIP3 promoter and suppresses its expression. RhBBX24 can also interact with RhHY5 and inhibit the interaction of RhHY5-RhELIP3. RhELIP3, RhHY5, and RhBBX24 exhibited similar circadian rhythms under low temperature with short period. Overall, our investigation highlights that photoprotection is involved in improving the freezing tolerance of evergreen rhododendrons.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Rhododendron , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cold Temperature , Freezing , Gene Expression Regulation, Plant , Photosystem II Protein Complex/metabolism , Rhododendron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...