Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.543
Filter
1.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831649

ABSTRACT

The mitogenome is an important tool for taxonomic and evolutionary investigation. Here, a few complete mitogenomes of red algae have been reported. We have reported the complete mitogenome sequences of Grateloupia cornea Okamura, 1913 (Rhodophyta, Halymeniales). The genome is 30,595 bp in circumference, and has a strongly biased [AT] = 66.9%. Like most other Grateloupia species, it has a group II intron in the cox1 gene. Maximum likelihood and maximum parsimony analyses showed that G. cornea is more closely related to G. asiatica. This shows that the group II intron in the cox1 ORF present in most species of Grateloupia was present in their common ancestor, and uniquely lost in G. asiatica. The seven Grateloupia species with known mitogenome sequences remain monophyletic, with the genus Polyopes as sister taxon. The complete mitochondrial genome data will be valuable for future research on comparative mitochondrial genome analysis, an extensive understanding of gene content and organization, evolution of the cox1 intron in Rhodophyta as well as phylogenetic analysis.


Subject(s)
Genome, Mitochondrial , Phylogeny , Rhodophyta , Rhodophyta/genetics , Rhodophyta/classification , Introns/genetics , Evolution, Molecular
2.
Environ Microbiol ; 26(5): e16629, 2024 May.
Article in English | MEDLINE | ID: mdl-38695111

ABSTRACT

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Subject(s)
Arsenic , Extremophiles , Gene Transfer, Horizontal , Rhodophyta , Rhodophyta/genetics , Extremophiles/genetics , Arsenic/metabolism , Mercury/metabolism , Stress, Physiological/genetics , Inactivation, Metabolic/genetics , Evolution, Molecular
3.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731568

ABSTRACT

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Subject(s)
Antineoplastic Agents , Rhodophyta , Zebrafish , Rhodophyta/chemistry , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , A549 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Liposomes/chemistry , Gas Chromatography-Mass Spectrometry , Nanoparticles/chemistry , Cell Line, Tumor
4.
Mar Drugs ; 22(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786583

ABSTRACT

Glycosidic linkage analysis was conducted on the unfractionated polysaccharides in alcohol-insoluble residues (AIRs) prepared from six red seaweeds (Gracilariopsis sp., Prionitis sp., Mastocarpus papillatus, Callophyllis sp., Mazzaella splendens, and Palmaria palmata) using GC-MS/FID analysis of partially methylated alditol acetates (PMAAs). The cell walls of P. palmata primarily contained mixed-linkage xylans and small amounts of sulfated galactans and cellulose. In contrast, the unfractionated polysaccharides of the other five species were rich in galactans displaying diverse 3,6-anhydro-galactose and galactose linkages with varied sulfation patterns. Different levels of cellulose were also observed. This glycosidic linkage method offers advantages for cellulose analysis over traditional monosaccharide analysis that is known for underrepresenting glucose in crystalline cellulose. Relative linkage compositions calculated from GC-MS and GC-FID measurements showed that anhydro sugar linkages generated more responses in the latter detection method. This improved linkage workflow presents a useful tool for studying polysaccharide structural variations across red seaweed species. Furthermore, for the first time, relative linkage compositions from GC-MS and GC-FID measurements, along with normalized FID and total ion current (TIC) chromatograms without peak assignments, were analyzed using principal component analysis (PCA) as a proof-of-concept demonstration of the technique's potential to differentiate various red seaweed species.


Subject(s)
Gas Chromatography-Mass Spectrometry , Polysaccharides , Rhodophyta , Seaweed , Polysaccharides/chemistry , Seaweed/chemistry , Gas Chromatography-Mass Spectrometry/methods , Rhodophyta/chemistry , Methylation , Glycosides/chemistry
5.
Mar Drugs ; 22(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786588

ABSTRACT

Red phycoerythrin (R-PE) is a highly valuable protein found in an edible seaweed, Pyropia yezoensis. It is used extensively in biotechnological applications due to its strong fluorescence and stability in diverse environments. However, the current methods for extracting and purifying R-PE are costly and unsustainable. The aim of the present study was to enhance the financial viability of the process by improving the extraction and purification of R-PE from dried P. yezoensis and to further enhance R-PE value by incorporating it into a tandem dye for molecular biology applications. A combination of ultrafiltration, ion exchange chromatography, and gel filtration yielded concentrated (1 mg·mL-1) R-PE at 99% purity. Using purified PE and Cyanine5 (Cy5), an organic tandem dye, phycoerythrin-Cy5 (PE-Cy5), was subsequently established. In comparison to a commercially available tandem dye, PE-Cy5 exhibited 202.3% stronger fluorescence, rendering it suitable for imaging and analyzes that require high sensitivity, enhanced signal-to-noise ratio, broad dynamic range, or shorter exposure times to minimize potential damage to samples. The techno-economic analysis confirmed the financial feasibility of the innovative technique for the extraction and purification of R-PE and PE-Cy5 production.


Subject(s)
Carbocyanines , Phycoerythrin , Phycoerythrin/chemistry , Phycoerythrin/isolation & purification , Carbocyanines/chemistry , Seaweed/chemistry , Fluorescent Dyes/chemistry , Chromatography, Ion Exchange/methods , Chromatography, Gel/methods , Ultrafiltration/methods , Rhodophyta/chemistry , Pigments, Biological/isolation & purification , Pigments, Biological/chemistry , Edible Seaweeds , Porphyra
6.
Proc Biol Sci ; 291(2023): 20240623, 2024 May.
Article in English | MEDLINE | ID: mdl-38807518

ABSTRACT

Intraspecific and habitat-mediated responses to chemical cues play key roles in structuring populations of marine species. We investigated the behaviour of herbivorous-stage juvenile crown-of-thorns sea stars (COTS; Acanthaster sp.) in flow-through choice chambers to determine if chemical cues from their habitat influence movement and their transition to become coral predators. Juveniles at the diet transition stage were exposed to cues from their nursery habitat (coral rubble-crustose coralline algae (CCA)), live coral and adult COTS to determine if waterborne cues influence movement. In response to CCA and coral as sole cues, juveniles moved towards the cue source and when these cues were presented in combination, they exhibited a preference for coral. Juveniles moved away from adult COTS cues. Exposure to food cues (coral, CCA) in the presence of adult cues resulted in variable responses. Our results suggest a feedback mechanism whereby juvenile behaviour is mediated by adult chemical cues. Cues from the adult population may deter juveniles from the switch to corallivory. As outbreaks wane, juveniles released from competition may serve as a proximate source of outbreaks, supporting the juveniles-in-waiting hypothesis. The accumulation of juveniles within the reef infrastructure is an underappreciated potential source of COTS outbreaks that devastate coral reefs.


Subject(s)
Anthozoa , Cues , Starfish , Animals , Anthozoa/physiology , Starfish/physiology , Coral Reefs , Herbivory , Ecosystem , Feeding Behavior , Rhodophyta/physiology
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731824

ABSTRACT

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Subject(s)
Agar , Rhodophyta , Rhodophyta/genetics , Rhodophyta/metabolism , Rhodophyta/growth & development , Salinity , Gene Expression Regulation, Plant , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Temperature , Nitrogen/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731988

ABSTRACT

Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 µM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.


Subject(s)
Copper , Metabolome , Transcriptome , Copper/toxicity , Copper/metabolism , Metabolome/drug effects , Seaweed/metabolism , Seaweed/genetics , Rhodophyta/metabolism , Rhodophyta/genetics , Rhodophyta/drug effects , Reactive Oxygen Species/metabolism , Gene Expression Profiling , Stress, Physiological , Oxidative Stress/drug effects , Metabolomics/methods
9.
Food Funct ; 15(11): 5895-5907, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38727519

ABSTRACT

In order to explore the in vivo anti-food allergy activity of Lactobacillus sakei subsp. sakei-fermented Eucheuma spinosum polysaccharides F1-ESP-3, an ovalbumin (OVA)-induced food allergy mouse model was established by ascites immunization and gavage. The weight, temperature, incidence of diarrhea, levels of allergic mediators and inflammatory factors in the serum of mice were analyzed. We analyzed the differentiation of mouse spleen lymphocytes and the proportion of sensitized mast cells by flow cytometry. The intestinal barrier status of mice was analyzed by intestinal pathological tissue sections and microbiota sequencing. The results showed that F1-ESP-3 could alleviate the food allergy symptoms of mice, such as hypothermia and loose stool; levels of OVA-specific immunoglobulin E, mast cell protease and histamine in the serum of sensitized mice and the proportion of dendritic cells and mast cells in mouse spleen were significantly reduced; in addition, F1-ESP-3 may protect the intestinal barrier and further improve the intestinal microenvironment of food-allergic mice by regulating the abundance of Bacteroidetes and Firmicutes. F1-ESP-3 can further improve the intestinal microenvironment of food-allergic mice by upregulating the levels of Lachnospiraceae, and may affect the signal pathways such as NOD-like receptor, MAPK, I kappa B and antigen processing and presentation.


Subject(s)
Food Hypersensitivity , Mice, Inbred BALB C , Polysaccharides , Animals , Mice , Food Hypersensitivity/drug therapy , Polysaccharides/pharmacology , Fermentation , Gastrointestinal Microbiome/drug effects , Female , Mast Cells/drug effects , Mast Cells/immunology , Disease Models, Animal , Immunoglobulin E/blood , Immunoglobulin E/immunology , Latilactobacillus sakei , Spleen/drug effects , Ovalbumin , Lactobacillus , Edible Seaweeds , Rhodophyta
10.
Glob Chang Biol ; 30(5): e17300, 2024 May.
Article in English | MEDLINE | ID: mdl-38738563

ABSTRACT

Rhodoliths built by crustose coralline algae (CCA) are ecosystem engineers of global importance. In the Arctic photic zone, their three-dimensional growth emulates the habitat complexity of coral reefs but with a far slower growth rate, growing at micrometers per year rather than millimeters. While climate change is known to exert various impacts on the CCA's calcite skeleton, including geochemical and structural alterations, field observations of net growth over decade-long timescales are lacking. Here, we use a temporally explicit model to show that rising ocean temperatures over nearly 100 years were associated with reduced rhodolith growth at different depths in the Arctic. Over the past 90 years, the median growth rate was 85 µm year-1 but each °C increase in summer seawater temperature decreased growth by a mean of 8.9 µm (95% confidence intervals = 1.32-16.60 µm °C-1, p < .05). The decrease was expressed for rhodolith occurrences in 11 and 27 m water depth but not at 46 m, also having the shortest time series (1991-2015). Although increasing temperatures can spur plant growth, we suggest anthropogenic climate change has either exceeded the population thermal optimum for these CCA, or synergistic effects of warming, ocean acidification, and/or increasing turbidity impair rhodolith growth. Rhodoliths built by calcitic CCA are important habitat providers worldwide, so decreased growth would lead to yet another facet of anthropogenic habitat loss.


Subject(s)
Climate Change , Rhodophyta , Temperature , Arctic Regions , Rhodophyta/growth & development , Rhodophyta/physiology , Seawater/chemistry
11.
Mar Pollut Bull ; 203: 116411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733890

ABSTRACT

This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.


Subject(s)
Diatoms , Rhodophyta , Diatoms/growth & development , Rhodophyta/growth & development , Rhodophyta/physiology , Seaweed , Chlorophyll/metabolism , Plankton , Photosynthesis/drug effects
12.
Commun Biol ; 7(1): 312, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594478

ABSTRACT

Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.


Subject(s)
Hot Springs , Rhodophyta , Phylogeny , Parks, Recreational , Ecosystem , Biomass , Rhodophyta/genetics
13.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674025

ABSTRACT

In this study, we applied the iterative procedure (IP) method to search for families of highly diverged dispersed repeats in the genome of Cyanidioschyzon merolae, which contains over 16 million bases. The algorithm included the construction of position weight matrices (PWMs) for repeat families and the identification of more dispersed repeats based on the PWMs using dynamic programming. The results showed that the C. merolae genome contained 20 repeat families comprising a total of 33,938 dispersed repeats, which is significantly more than has been previously found using other methods. The repeats varied in length from 108 to 600 bp (522.54 bp in average) and occupied more than 72% of the C. merolae genome, whereas previously identified repeats, including tandem repeats, have been shown to constitute only about 28%. The high genomic content of dispersed repeats and their location in the coding regions suggest a significant role in the regulation of the functional activity of the genome.


Subject(s)
Repetitive Sequences, Nucleic Acid , Rhodophyta , Rhodophyta/genetics , Repetitive Sequences, Nucleic Acid/genetics , Genome , Algorithms , Genomics/methods
14.
Int J Biol Macromol ; 266(Pt 2): 131456, 2024 May.
Article in English | MEDLINE | ID: mdl-38588844

ABSTRACT

The red macroalga Sarcopeltis skottsbergii was subjected to hydrothermal processing to maximize the solubilization and recovery of carrageenan. Once isolated by ethanol precipitation, the carrageenan was further chemically (oligosaccharides composition), and structurally (TGA/DTG, DSC, HPSEC, FTIR-ATR, 1H NMR, SEM, etc.) characterized, as well as employed as source for the synthesis of hydrogels. The rheological properties of the carrageenan showed promising results as biopolymer for food applications due to the high molecular weight (500 kDa) presenting higher cell viability than 70 %. The evaluation of immune activation using ELISA test reflected a lower inflammatory response for concentrations of 0.025 % of carrageenan. Conversely, the cell viability of the synthesized hydrogels did not surpass 50 %. This work represents a considerable step forward to obtain a biopolymer from natural sources and a thorough study of their chemical, structural and biological properties.


Subject(s)
Carrageenan , Hydrogels , Rhodophyta , Tissue Engineering , Carrageenan/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Animals , Cell Survival/drug effects , Mice , Rheology , Humans , Biocompatible Materials/chemistry , Molecular Weight
15.
Planta Med ; 90(6): 469-481, 2024 May.
Article in English | MEDLINE | ID: mdl-38580306

ABSTRACT

Methylrhodomelol (1: ) is a bromophenol from the red alga Vertebrata lanosa that has been associated with antimicrobial properties. The aim of the current study was, therefore, to assess the antimicrobial potential of this compound in more detail against the gram-negative pathogen Pseudomonas aeruginosa. 1: exerted weak bacteriostatic activity against different strains when grown in minimal medium, whereas other phenolics were inactive. In addition, 1: (35 and 10 µg/mL) markedly enhanced the susceptibility of multidrug-resistant P. aeruginosa toward the aminoglycoside gentamicin, while it did not affect the viability of Vero kidney cells up to 100 µM. Finally, pyoverdine release was reduced in bacteria treated at sub-inhibitory concentration, but no effect on other virulence factors was observed. Transcriptome analysis of treated versus untreated P. aeruginosa indicated an interference of 1: with bacterial carbon and energy metabolism, which was corroborated by RT-qPCR and decreased ATP-levels in treated bacteria. In summary, the current study characterized the antibacterial properties of methylrhodomelol, revealed its potential as an adjuvant to standard antibiotics, and generated a hypothesis on its mode of action.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Rhodophyta , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Rhodophyta/chemistry , Vero Cells , Phenols/pharmacology , Chlorocebus aethiops , Gentamicins/pharmacology
16.
mSystems ; 9(5): e0008324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38647296

ABSTRACT

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Subject(s)
Snow , Snow/virology , Snow/microbiology , British Columbia , Bacteria/genetics , Bacteria/virology , Bacteria/isolation & purification , Eutrophication , Genome, Viral/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Rhodophyta/virology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification
17.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675559

ABSTRACT

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Subject(s)
Apoptosis , Osteoblasts , Osteoclasts , RANK Ligand , Rhodophyta , Animals , Humans , Mice , Apoptosis/drug effects , Cell Differentiation/drug effects , Ethanol/chemistry , Hydrogen Peroxide/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , RANK Ligand/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Rhodophyta/chemistry
18.
Sci Total Environ ; 931: 172692, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663622

ABSTRACT

The response of marine biodiversity to mariculture has long been a research focus in marine ecology. However, the effects of seaweed cultivation on biological community assembly are poorly understood, especially in diverse communities with distinct ecological characteristics. In this study, we used environmental DNA metabarcoding to investigate the spatial distribution patterns of bacterial, protistan, and metazoan diversity, aiming to reveal the mechanisms of community assembly in the Pyropia haitanensis cultivation zone along the Fujian coast, China. We found that, compared with the biological communities in control zones, those in P. haitanensis cultivation zones exhibited stronger geographic distance-decay patterns and displayed more complex and stable network structures. Deterministic processes (environmental selection) played a more important role in the assembly of bacterial, protistan, and metazoan communities in P. haitanensis cultivation zones, especially metazoan communities. Variance partitioning analysis showed that environmental variables made greater contributions to the diversity of the three types of communities within the P. haitanensis cultivation zones than in the control zones. Partial least squares path modeling analysis identified nitrate­nitrogen (NO3-N), pH, particulate organic carbon (POC), and dissolved organic carbon (DOC) as the key environmental variables affecting biodiversity. Overall, the environmental heterogeneity caused by the large-scale cultivation of P. haitanensis could be the crucial factor influencing the composition and structure of various biological communities. Our results highlight the importance of the responses of multi-group organisms to the cultivation of seaweed, and provide insights into the coexistence patterns of biodiversity at the spatial scale.


Subject(s)
Biodiversity , China , Environmental Monitoring , Seaweed , Rhodophyta , Aquaculture
19.
Biotechnol Adv ; 73: 108351, 2024.
Article in English | MEDLINE | ID: mdl-38582331

ABSTRACT

Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered ß-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-ß-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.


Subject(s)
Biotechnology , Carrageenan , Glycoside Hydrolases , Metabolic Networks and Pathways , Carrageenan/metabolism , Carrageenan/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Biofuels , Rhodophyta/enzymology , Rhodophyta/metabolism
20.
Environ Sci Pollut Res Int ; 31(23): 33651-33662, 2024 May.
Article in English | MEDLINE | ID: mdl-38689042

ABSTRACT

The present study investigates the usage of a novel natural dye derived from red algae of Morocco in dye-sensitized solar cells (DSSCs) for the first time. The main pigments responsible for sensitizing the semiconductor TiO2 coatings in the red algae were identified as phycoerythrin, carotenoid, and chlorophyll. The efficiency of a DSSC made from red algae was compared to that of a solar cell made from chlorophyll alone. The photovoltaic performance of the DSSC was evaluated through photocurrent density to photovoltage (J-V) characteristic analysis, and the efficiency was found to be 0.93%. To gain insights into its behavior, the absorbance and photoluminescence in a broad range were studied. Both absorbance and photoluminescence exhibited a broad-spectrum range. Additionally, electronic properties, such as HOMO, LUMO, energy gap, and chemical reactivity parameters, were studied using density functional theory (DFT) calculations.


Subject(s)
Coloring Agents , Rhodophyta , Solar Energy , Coloring Agents/chemistry , Rhodophyta/chemistry , Density Functional Theory , Titanium/chemistry , Chlorophyll/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...