Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.014
Filter
1.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862519

ABSTRACT

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Subject(s)
Biofilms , Rhodopseudomonas , Water , Biofilms/growth & development , Rhodopseudomonas/metabolism , Rhodopseudomonas/growth & development , Water/chemistry , Water/metabolism , Photosynthesis , Electrons , Carbon Cycle , Nitrates/metabolism , Bioelectric Energy Sources/microbiology
2.
Chemosphere ; 359: 142323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735496

ABSTRACT

Anoxygenic phototrophic bacteria is a promising catalyst for constructing bioanode, but the mixed culture with non-photosynthetic bacteria is inevitable in an open environment application. In this study, a Rhodopseudomonas-dominated mixed culture with other electrogenic bacteria was investigated for deciphering the differentiated performance on electricity generation in light or dark conditions. The kinetic study showed that reaction rate of OM degradation was 9 times higher than that under dark condition, demonstrating that OM degradation was enhanced by photosynthesis. However, CE under light condition was lower. It indicated that part of OM was used to provide hydrogen donors for the fixation of CO2 or hydrogen production in photosynthesis, decreasing the OM used for electron transfer. In addition, higher COD concentration was not conducive to electricity generation. EIS analysis demonstrated that higher OM concentration would increase Rct to hinder the transfer of electrons from bacteria to the electrode. Indirect and direct electron transfer were revealed by CV analysis for light and dark biofilm, respectively, and nanowires were also observed by SEM graphs, further revealing the differentiate performance. Microbial community analysis demonstrated Rhodopseudomonas was dominated in light and decreased in dark, but Geobacter increased apparently from light to dark, resulting in different power generation performance. The findings revealed the differentiated performance on electricity generation and pollutant removal by mixed culture of phototrophic bacteria in light or dark, which will improve the power generation from photo-microbial fuel cells.


Subject(s)
Bioelectric Energy Sources , Electricity , Rhodopseudomonas , Rhodopseudomonas/metabolism , Photosynthesis , Light , Electrodes , Biofilms/growth & development , Biological Oxygen Demand Analysis , Electron Transport , Geobacter/metabolism , Geobacter/physiology
4.
Sci Total Environ ; 926: 171824, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521273

ABSTRACT

Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.


Subject(s)
Oryza , Rhodopseudomonas , Soil Pollutants , Cadmium/analysis , Oryza/chemistry , Biological Availability , Soil/chemistry , Soil Pollutants/analysis
5.
Bioprocess Biosyst Eng ; 47(4): 583-596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491193

ABSTRACT

In tropical regions, the viability of outdoor photo-fermentative biohydrogen production faces challenges arising from elevated temperatures and varying light intensity. This research aimed to explore how high temperatures and outdoor environments impact both biohydrogen production and the growth of purple non-sulfur bacteria. Our findings revealed the potential of Rhodopseudomonas spp. as a robust outdoor hydrogen-producing bacteria, demonstrating its capacity to thrive and generate biohydrogen even at 40 °C and under fluctuating outdoor conditions. Rhodopseudomonas harwoodiae NM3/1-2 produced the highest cumulative biohydrogen of 223 mL/L under anaerobic light conditions at 40 °C, while Rhodopseudomonas harwoodiae 2M had the highest dry cell weight of 2.93 g/L. However, R. harwoodiae NM3/1-2 demonstrated the highest dry cell weight of 3.99 g/L and Rhodopseudomonas pentothenatexigens KKU-SN1/1 exhibited the highest cumulative biohydrogen production of 400 mL/L when grown outdoors. In addition, the outdoor enhancement of biohydrogen production was achieved through the utilization of a cluster of ten bioreactors system. The outcomes demonstrated a notable improvement in biohydrogen production efficiency, marked by the highest daily biohydrogen production of 493 mL/L d by R. pentothenatexigens KKU-SN1/1. Significantly, the highest biohydrogen production rate was noted to be 17 times greater than that observed in conventional batch production methods. This study is the first to utilize R. pentothenatexigens and R. harwoodiae for sustained biohydrogen production at high temperatures and in outdoor conditions over an extended operational period. The successful utilization of a clustered system of ten bioreactors demonstrates potential to scale-up for industrial biohydrogen production.


Subject(s)
Rhodopseudomonas , Bioreactors , Fermentation , Hydrogen
6.
J Environ Manage ; 356: 120726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537456

ABSTRACT

Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.


Subject(s)
Ammonia , Rhodopseudomonas , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Lead , Electrolysis , Waste Disposal Facilities , Nitrogen
7.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504412

ABSTRACT

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Subject(s)
Carbon Dioxide , Ferric Compounds , Rhodopseudomonas , Oxidation-Reduction , Lactic Acid , Ferrous Compounds , Pyruvates , Acetates , Glucose
8.
J Environ Manage ; 355: 120350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422846

ABSTRACT

The difficulty of the microbial conversion process for the degradation of sotol vinasse due to its high acidity and organic load makes it an effluent with high potential for environmental contamination, therefore its treatment is of special interest. Calcium carbonate is found in great abundance and has the ability to act as a neutralizing agent, maintaining the alkalinity of the fermentation medium as well as, through its dissociation, releasing CO2 molecules that can be used by phototrophic CO2-fixing bacteria. This study evaluated the use of Rhodopseudomonas telluris (OR069658) for the degradation of vinasse in different concentrations of calcium carbonate (0, 2, 4, 6, 8 and 10% m/v). The results showed that calcium carbonate concentration influenced volatile fatty acids (VFA), alkalinity and pH, which in turn influenced changes in the degradation of chemical oxygen demand (COD), phenol and sulfate. Maximum COD and phenol degradation values of 83.16 ± 0.15% and 90.16 ± 0.30%, respectively, were obtained at a calcium carbonate concentration of 4%. At the same time, the lowest COD and phenol degradation values of 52.01 ± 0.38% and 68.21 ± 0.81%, respectively, were obtained at a calcium carbonate concentration of 0%. The data obtained also revealed to us that at high calcium carbonate concentrations of 6-10%, sotol vinasse can be biosynthesized by Rhodopseudomonas telluris (OR069658) to VFA, facilitating the degradation of sulfates. The findings of this study confirmed the potential for using Rhodopseudomonas telluris (OR069658) at a calcium carbonate concentration of 4% as an appropriate alternative treatment for sotol vinasse degradation.


Subject(s)
Carbon , Rhodopseudomonas , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Carbon Dioxide , Industrial Waste/analysis , Calcium Carbonate , Phenols , Bioreactors
9.
Appl Environ Microbiol ; 90(2): e0210423, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38206012

ABSTRACT

Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.


Subject(s)
Rhodopseudomonas , Humans , Animals , Anaerobiosis , Rhodopseudomonas/genetics , Rhodopseudomonas/metabolism , Biodegradation, Environmental , Mutation
10.
Int J Phytoremediation ; 26(4): 535-545, 2024.
Article in English | MEDLINE | ID: mdl-37668058

ABSTRACT

In the Mekong Delta Vietnam, rice is heavily affected by Al3+ and Fe2+ ions appearing in local acid sulfate soils (AAS). Therefore, the current study was carried out to assess the efficacy of a liquid biofertilizer (LB) containing nitrogen-fixing and phosphorus-solubilizing bacterial strains of Rhodopseudomonas spp. on remediation of soil characteristics and improvements of rice uptakes, growth, and yield. The experiment was designed in a randomized block design with nine treatments and four replications in an ASS. The results have shown that the LB application could contribute to the remediation of soil properties, including an increase in concentrations of NH4+ by 12.9%-19.4%, soluble P by 25.7%-42.6%, total N uptake by 40.7-64.0 kg ha-1 and total P uptake by 5.60-12.6 kg ha-1, and a decrease in concentrations of toxins, such as Al3+ by 12.1%-19.7% and Fe2+ by 16.6%-19.0%, compared to the treatment with the farmer-based fertilization. Thereby, grain yield was improved by 31.9%-32.2% with the LB versus the treatments without the bacteria and by 9.5%-11.1% compared to the commercial biofertilizer treatments. The application of LB reduced 25% N and 50% P of the recommendation versus the farmers' fertilization and improved performance of rice growth and yield cultivated on ASS which suffered from Al3+ and Fe2+ ions.


The current study has introduced the potential of the Rhodopseudomonas palustris TLS06, VNW02, VNW64, and VNS89 strains in performance as a bioremediator and a biofertilizer. The strains have shown their ability to recover acid sulfate soils, which had damaged the yield of rice plants due to high concentrations of Al3+ and Fe2+ ions. The work has delivered a biological approach to improve acid sulfate soil fertility and rice productivity in Vietnam and in other parts of the world, which have similar conditions, to achieve sustainable agriculture and food security.


Subject(s)
Oryza , Rhodopseudomonas , Soil , Sulfates , Biodegradation, Environmental , Fertilizers/analysis , Agriculture/methods
11.
J Environ Manage ; 351: 119913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154222

ABSTRACT

The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.


Subject(s)
Nanotubes, Carbon , Rhodopseudomonas , Wastewater , Silver , Coloring Agents/metabolism , Titanium , Biodegradation, Environmental , Azo Compounds , Catalysis
12.
J Environ Manage ; 345: 118834, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37659365

ABSTRACT

Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/µL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.


Subject(s)
Environmental Pollutants , Rhodopseudomonas , Wastewater , Ubiquinone , Bacteriochlorophylls , Sewage , Carotenoids , Nitrogen , Oil and Gas Industry , Phosphates
13.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762380

ABSTRACT

Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.


Subject(s)
Arabidopsis , Rhodopseudomonas , Humans , PQQ Cofactor , Growth Disorders , Phosphorus
14.
PLoS Comput Biol ; 19(8): e1011371, 2023 08.
Article in English | MEDLINE | ID: mdl-37556472

ABSTRACT

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.


Subject(s)
Rhodopseudomonas , Rhodopseudomonas/genetics , Rhodopseudomonas/metabolism , Benzoates/metabolism , Photosynthesis/genetics
15.
J Hazard Mater ; 458: 131937, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37421856

ABSTRACT

Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.


Subject(s)
Nanoparticles , Rhodopseudomonas , Cadmium , Cystathionine gamma-Lyase/metabolism , Biomineralization , Rhodopseudomonas/metabolism , Sulfides , Water
16.
Appl Environ Microbiol ; 89(6): e0048723, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37272846

ABSTRACT

The phyllosphere presents a hostile environment for many biocontrol agents; however, it is as significant as is the rhizosphere for plant health. Deploying biocontrol bacteria into the phyllosphere can efficiently suppress diseases; however, the lack of knowledge on the phyllosphere adaptive traits of biocontrol bacteria poses challenges. In this study, we demonstrated that Rhodopseudomonas palustris GJ-22 colonizes the phyllosphere by forming cell aggregates. The formation of cell aggregates required the production of exopolysaccharides (EPS), which depended on the function of the rpaI-rpaR quorum sensing (QS) mechanism, mediated by the signaling molecule p-coumaroyl-HSL (pC-HSL). The mutation of the EPS biosynthesis gene Exop1 or the signaling molecule biosynthesis gene rpaI compromised the ability of GJ-22 to tolerate reactive oxygen intermediates (ROIs), such as H2O2, in vitro and to form cell aggregates in vivo. Collectively, the results revealed that QS mediates EPS production and consequently leads to bacterial cell aggregation. IMPORTANCE Quorum sensing is used by various bacteria for coordinating the multiplication of bacterial cells in a group and for modulating the behaviors of surrounding microbial species. Host plants can benefit from this interspecies modulation, as it can disrupt the QS circuits of pathogenic bacteria. Some N-acyl homoserine lactone- (AHL-) producing bacteria that were introduced into the phyllosphere as biocontrol agents may establish AHL-based crosstalk with indigenous microbes to steer the nutritional and microecological conditions toward their own and the host plant's benefit. Here, we showed that biocontrol bacteria introduced into the phyllosphere require a functioning QS circuit to establish colonies and suppress pathogens. Furthermore, our findings provoked a broader investigation into the role of the QS circuit in beneficial microorganism-plant interactions.


Subject(s)
Quorum Sensing , Rhodopseudomonas , Quorum Sensing/genetics , Hydrogen Peroxide , Rhodopseudomonas/genetics , Signal Transduction , Acyl-Butyrolactones
17.
Molecules ; 28(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37375288

ABSTRACT

Rhodopseudomonas palustris is an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the pio operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss. The expression of another periplasmic HiPIP, designated Rpal_4085, is strongly upregulated in photoferrotrophic conditions, making it a strong candidate for a PioC substitute. However, it is unable to reduce the LH-RC. In this work we used NMR spectroscopy to map the interactions between PioC, PioA, and the LH-RC, identifying the key amino acid residues involved. We also observed that PioA directly reduces the LH-RC, and this is the most likely substitute upon PioC deletion. By contrast, Rpal_4085 demontrated significant electronic and structural differences from PioC. These differences likely explain its inability to reduce the LH-RC and highlight its distinct functional role. Overall, this work reveals the functional resilience of the pio operon pathway and further highlights the use of paramagnetic NMR for understanding key biological processes.


Subject(s)
Iron , Rhodopseudomonas , Iron/metabolism , Oxidation-Reduction , Rhodopseudomonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
18.
Bioprocess Biosyst Eng ; 46(6): 913-919, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36973588

ABSTRACT

Photofermentative hydrogen production has gained increasing attention as a source of green energy. To make such photofermentation processes economically competitive, operating costs need to be reduced, possibly through outdoor operation. Because photofermentation processes are light dependent, the emission spectrum and intensity of light both have a significant influence on the hydrogen production and merit investigation. This study investigates the effect of light sources on the hydrogen production and growth of Rhodopseudomonas palustris, comparing the organism's productivity under longer-wavelength light and light mimicking sunlight. Hydrogen production is enhanced under longer-wavelength light, producing 26.8% (± 7.3%) more hydrogen as compared to under light mimicking that of sunlight; however, R. palustris is still able to produce a considerable volume of hydrogen under light with a spectrum mimicking that of sunlight, providing a promising avenue for future research.


Subject(s)
Light , Rhodopseudomonas , Hydrogen
19.
mBio ; 14(2): e0360922, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786592

ABSTRACT

How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. IMPORTANCE The molecular and physiological basis of bacterial longevity in growth arrest is important to investigate for several reasons. Such investigations could improve treatment of chronic infections, advance use of non-growing bacteria as biocatalysts to make high yields of value-added products, and improve estimates of microbial activities in natural habitats, where cells are often growing slowly or not at all. Here, we compared survival of the phototrophic bacterium Rhodopseudomonas palustris under conditions where it generates ATP (incubation in light), and where it does not generate ATP (incubation in dark) to directly assess effects of energy depletion on long-term viability. We found that ATP is important for long-term survival over weeks. However, R. palustris survives 12 h periods of ATP depletion without loss of viability, apparently in anticipation of sunrise and restoration of its ability to generate ATP. Our work suggests that cells respond to ATP depletion by shutting down protein synthesis.


Subject(s)
Longevity , Rhodopseudomonas , Rhodopseudomonas/metabolism , Carbon/metabolism , Adenosine Triphosphate/metabolism
20.
Microb Biotechnol ; 16(3): 569-578, 2023 03.
Article in English | MEDLINE | ID: mdl-36537073

ABSTRACT

Purple phototrophic bacteria are one of the main actors in chemolithotrophic carbon fixation and, therefore, fundamental in the biogeochemical cycle. These microbes are capable of using insoluble electron donors such as ferrous minerals or even carbon-based electrodes. Carbon fixation through extracellular electron uptake places purple phototrophic bacteria in the field of microbial electrosynthesis as key carbon capturing microorganisms. In this work we demonstrate biomass production dominated by purple phototrophic bacteria with a cathode (-0.6 V vs. Ag/AgCl) as electron donor. In addition, we compared the growth and microbial population structure with ferrous iron as the electron donor. We detect interaction between the cathode and the consortium showing a midpoint potential of 0.05 V (vs. Ag/AgCl). Microbial community analyses revealed different microbial communities depending on the electron donor, indicating different metabolic interactions. Electrochemical measurements together with population analyses point to Rhodopseudomonas genus as the key genus in the extracellular electron uptake. Furthermore, the genera Azospira and Azospirillum could play a role in the photoelectrotrophic consortium.


Subject(s)
Rhodopseudomonas , Biomass , Iron/metabolism , Electricity , Carbon/metabolism , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...