Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 6(4): e0052521, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34406852

ABSTRACT

Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.


Subject(s)
Metagenomics/methods , Microbiota/genetics , Phototrophic Processes , Rhodopsins, Microbial/genetics , Seawater/microbiology , Alphaproteobacteria/chemistry , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Antarctic Regions , Ecosystem , Flavobacteriaceae/chemistry , Flavobacteriaceae/classification , Flavobacteriaceae/genetics , Phylogeny , Rhodopsin/metabolism , Rhodopsins, Microbial/analysis
2.
Nature ; 558(7711): 595-599, 2018 06.
Article in English | MEDLINE | ID: mdl-29925949

ABSTRACT

Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.


Subject(s)
Metagenomics , Rhodopsin/analysis , Rhodopsin/classification , Amino Acid Sequence , Eukaryota/chemistry , Evolution, Molecular , Rhodopsin/chemistry , Rhodopsin/radiation effects , Rhodopsins, Microbial/analysis , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/classification , Rhodopsins, Microbial/radiation effects
3.
Chem Commun (Camb) ; 53(30): 4250-4253, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28361139

ABSTRACT

The trans-membrane protein - proteorhodopsin (pR) has been incorporated into supported lipid bilayers (SLB). In-plane electric fields have been used to manipulate the orientation and concentration of these proteins, within the SLB, through electrophoresis leading to a 25-fold increase concentration of pR.


Subject(s)
Lipid Bilayers/chemistry , Rhodopsins, Microbial/analysis , Electrophoresis , Microscopy, Atomic Force
4.
J Biotechnol ; 206: 52-7, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-25913175

ABSTRACT

Proteorhodopsin (PR) is a light harvesting protein widely distributed among bacterioplankton that plays an integral energetic role in a new pathway of marine light capture. The conversion of light into chemical energy in non-chlorophyll-based bacterial systems could contribute to overcoming thermodynamic and metabolic constraints in biofuels production. In an attempt to improve biohydrogen production yields, H2 evolution catalyzed by endogenous hydrogenases, Hyd-3 and/or Hyd-4, was measured when recombinant proteorhodopsin (PR) was concomitantly expressed in Escherichia coli cells. Higher amounts of H2 were obtained with recombinant cells in a light and chromophore dependent manner. This effect was only observed when HyfR, the specific transcriptional activator of the hyf operon encoding Hyd-4 was overexpressed in E. coli, suggesting that an excess of protons generated by PR activity could increase hydrogen production by Hyd-4 but not by Hyd-3. Although many of the subunits of Hyd-3 and Hyd-4 are very similar, Hyd-4 possesses three additional proton-translocating NADH-ubiquinone oxidoreductase subunits, suggesting that it is dependent upon ΔµH(+). Altogether, these results suggest that protons generated by proteorhodopsin in the periplasm can only enhance hydrogen production by hydrogenases with associated proton translocating subunits.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogenase/metabolism , Rhodopsins, Microbial/metabolism , Escherichia coli/genetics , Escherichia coli/radiation effects , Escherichia coli Proteins/genetics , Hydrogen/analysis , Hydrogenase/genetics , Rhodopsins, Microbial/analysis , Rhodopsins, Microbial/genetics , Vitamin A
5.
Environ Microbiol ; 14(1): 140-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21883799

ABSTRACT

The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 10(26) microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454-pyrosequencing-generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis thaliana), clover (Trifolium repens) and rice (Oryza sativa). Our findings, for the first time describing microbial rhodopsins from non-aquatic habitats, point towards the potential coexistence of microbial rhodopsin-based phototrophy and plant chlorophyll-based photosynthesis, with the different pigments absorbing non-overlapping fractions of the light spectrum.


Subject(s)
Phototrophic Processes , Plant Leaves/microbiology , Plants/microbiology , Rhodopsins, Microbial/analysis , Ecosystem , Light , Metagenome , Photosynthesis , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...