Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 9(9): 1024-1034, 2021 09.
Article in English | MEDLINE | ID: mdl-34193462

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are MR1-restricted innate-like T cells that recognize non-peptide antigens including riboflavin derivates. Although in vitro-activated MAIT cells show antitumor activity, the in vivo role of MAIT cells in cancer is still unclear. Here, we have shown that MAIT cells have antitumor function in vivo when activated by a combination of the synthetic riboflavin synthesis pathway-derived antigen 5-OP-RU [5-(2-oxopropylideneamino)-6-D-ribitylaminouracil] and the Toll-like receptor 9 (TLR9) agonist CpG. Coadministration of 5-OP-RU and CpG induced strong systemic in vivo expansion and activation of MAIT cells with high CD69 expression, pronounced effector memory phenotype, and upregulated levels of effector molecules including IFNγ, granzyme B, and perforin. Activated and expanded MAITs induced a potent and broad antitumor immune response in murine models of liver metastasis and hepatocellular carcinoma, lung metastasis, and subcutaneous tumors in two different mouse strains. Such tumor inhibition was absent in MAIT-deficient Mr1 -/- mice. CRISPR/Cas9-mediated MR1 knockout in tumor cells did not affect efficacy of this MAIT-directed immunotherapy, pointing toward an indirect mechanism of action. Our findings suggest that MAIT cells are an attractive target for cancer immunotherapy.See related Spotlight by Lantz, p. 996.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Neoplasms/drug therapy , Animals , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , CRISPR-Cas Systems , Cell Line, Tumor , Female , Histocompatibility Antigens Class I/genetics , Humans , Lectins, C-Type , Male , Mice , Minor Histocompatibility Antigens/genetics , Mucosal-Associated Invariant T Cells/metabolism , Neoplasms/metabolism , Ribitol/administration & dosage , Ribitol/analogs & derivatives , Riboflavin/biosynthesis , Riboflavin/chemistry , Riboflavin/pharmacology , Uracil/administration & dosage , Uracil/analogs & derivatives
2.
Mucosal Immunol ; 14(5): 1055-1066, 2021 09.
Article in English | MEDLINE | ID: mdl-34158594

ABSTRACT

Targeting MAIT cells holds promise for the treatment of different diseases and infections. We previously showed that treatment of Mycobacterium tuberculosis infected mice with 5-OP-RU, a major antigen for MAIT cells, expands MAIT cells and enhances bacterial control. Here we treated M. tuberculosis infected rhesus macaques with 5-OP-RU intratracheally but found no clinical or microbiological benefit. In fact, after 5-OP-RU treatment MAIT cells did not expand, but rather upregulated PD-1 and lost the ability to produce multiple cytokines, a phenotype resembling T cell exhaustion. Furthermore, we show that vaccination of uninfected macaques with 5-OP-RU+CpG instillation into the lungs also drives MAIT cell dysfunction, and PD-1 blockade during vaccination partly prevents the loss of MAIT cell function without facilitating their expansion. Thus, in rhesus macaques MAIT cells are prone to the loss of effector functions rather than expansion after TCR stimulation in vivo, representing a significant barrier to therapeutically targeting these cells.


Subject(s)
Lung/drug effects , Lung/immunology , Lung/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Ribitol/analogs & derivatives , Uracil/analogs & derivatives , Animals , Biomarkers , Cytokines/biosynthesis , Disease Management , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunophenotyping , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macaca mulatta , Monkey Diseases/diagnosis , Monkey Diseases/drug therapy , Monkey Diseases/etiology , Monkey Diseases/metabolism , Mycobacterium tuberculosis/immunology , Positron-Emission Tomography , Ribitol/administration & dosage , Tomography, X-Ray Computed , Tuberculosis/veterinary , Uracil/administration & dosage
3.
Front Immunol ; 11: 1773, 2020.
Article in English | MEDLINE | ID: mdl-32849637

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are a unique T cell subset that contributes to protective immunity against microbial pathogens, but little is known about the role of chemokines in recruiting MAIT cells to the site of infection. Pulmonary infection with Francisella tularensis live vaccine strain (LVS) stimulates the accrual of large numbers of MAIT cells in the lungs of mice. Using this infection model, we find that MAIT cells are predominantly CXCR6+ but do not require CXCR6 for accumulation in the lungs. However, CXCR6 does contribute to long-term retention of MAIT cells in the airway lumen after clearance of the infection. We also find that MAIT cells are not recruited from secondary lymphoid organs and largely proliferate in situ in the lungs after infection. Nevertheless, the only known ligand for CXCR6, CXCL16, is sufficient to drive MAIT cell accumulation in the lungs in the absence of infection when administered in combination with the MAIT cell antigen 5-OP-RU. Overall, this new data advances the understanding of mechanisms that facilitate MAIT cell accumulation and retention in the lungs.


Subject(s)
Chemokine CXCL16/administration & dosage , Chemotaxis, Leukocyte/drug effects , Francisella tularensis/pathogenicity , Lung/drug effects , Mucosal-Associated Invariant T Cells/drug effects , Pneumonia, Bacterial/metabolism , Receptors, CXCR6/metabolism , Administration, Intranasal , Animals , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CXCL16/metabolism , Coculture Techniques , Disease Models, Animal , Francisella tularensis/immunology , Host-Pathogen Interactions , Lung/immunology , Lung/metabolism , Lung/microbiology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Mice, Knockout , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Mucosal-Associated Invariant T Cells/microbiology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Receptors, CXCR6/deficiency , Receptors, CXCR6/genetics , Ribitol/administration & dosage , Ribitol/analogs & derivatives , Signal Transduction , Uracil/administration & dosage , Uracil/analogs & derivatives
4.
Eur J Med Genet ; 62(8): 103708, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31247379

ABSTRACT

Ribose 5-phosphate isomerase deficiency is a rare genetic leukoencephalopathy caused by pathogenic sequence variants in RPIA, that encodes ribose 5-phosphate isomerase, an enzyme in the pentose phosphate pathway. Till date, only three individuals with ribose 5-phosphate isomerase deficiency have been described in literature. We report on a subject with RPIA associated progressive leukoencephalopathy with elevated urine arabitol and ribitol levels and a novel missense variant c.770T > C p.(Ile257Thr) in exon 8 of RPIA. We also compare the phenotypes of all the four subjects. Our report confirms the phenotype and the genetic cause of this condition.


Subject(s)
Aldose-Ketose Isomerases/deficiency , Carbohydrate Metabolism, Inborn Errors/genetics , Leukoencephalopathies/genetics , Polyneuropathies/genetics , Aldose-Ketose Isomerases/genetics , Alleles , Carbohydrate Metabolism, Inborn Errors/drug therapy , Carbohydrate Metabolism, Inborn Errors/pathology , Humans , Leukoencephalopathies/drug therapy , Leukoencephalopathies/pathology , Male , Pentose Phosphate Pathway/genetics , Polyneuropathies/drug therapy , Polyneuropathies/pathology , Ribitol/administration & dosage , Sugar Alcohols/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...