Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 27(9): 981-990, 2021 09.
Article in English | MEDLINE | ID: mdl-34117118

ABSTRACT

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Ribosome Subunits/drug effects , Biological Transport , Cinnamates/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Kanamycin/pharmacology , Kinetics , Neomycin/pharmacology , Paromomycin/pharmacology , Peptide Elongation Factor G/genetics , Peptide Elongation Factor G/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Transfer/antagonists & inhibitors , RNA, Transfer/chemistry , RNA, Transfer/genetics , Ribosome Subunits/genetics , Ribosome Subunits/metabolism , Ribosome Subunits/ultrastructure , Spectinomycin/pharmacology , Streptomycin/pharmacology , Viomycin/pharmacology
2.
RNA ; 25(5): 600-606, 2019 05.
Article in English | MEDLINE | ID: mdl-30733327

ABSTRACT

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.


Subject(s)
Anti-Bacterial Agents/chemistry , Chloramphenicol/chemistry , Erythromycin/chemistry , Ribosome Subunits/drug effects , Thermus thermophilus/drug effects , Anti-Bacterial Agents/pharmacology , Binding Sites , Binding, Competitive , Chloramphenicol/pharmacology , Crystallography, X-Ray , Erythromycin/pharmacology , Escherichia coli/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Peptidyl Transferases/antagonists & inhibitors , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Protein Binding , Protein Biosynthesis , Protein Conformation , Ribosome Subunits/genetics , Ribosome Subunits/metabolism , Ribosome Subunits/ultrastructure , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
3.
Lett Appl Microbiol ; 64(1): 79-85, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27739094

ABSTRACT

The ability of the ribosome to assist in folding of proteins both in vitro and in vivo is well documented and is a nontranslational function of the ribosome. The interaction of the unfolded protein with the peptidyl transferase centre (PTC) of the bacterial large ribosomal subunit is followed by release of the protein in the folding competent state and rapid dissociation of ribosomal subunits. Our study demonstrates that the PTC-specific antibiotics, chloramphenicol and blasticidin S inhibit unfolded protein-mediated subunit dissociation. During post-termination stage of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. Ribosome dissociation mediated by RRF and induced at low magnesium concentration was also inhibited by the antibiotics indicating that the PTC antibiotics exert an associative effect on ribosomal subunits. In vivo, the antibiotics can also reduce the ribosomal degradation during carbon starvation, a process requiring ribosome subunit dissociation. This study reveals a new mode of action of the broad-spectrum antibiotics chloramphenicol and blasticidin. SIGNIFICANCE AND IMPACT OF THE STUDY: Ribosome synthesizes protein in all organisms and is the target for multiple antimicrobial agents. Our study demonstrates that chloramphenicol and blasticidin S that target the peptidyl transferase centre of the bacterial ribosome can then inhibit dissociation of 70S ribosome mediated by (i) unfolded protein, (ii) translation factors or (iii) low Mg+2 concentrations in vitro and thereby suppresses ribosomal degradation during carbon starvation in vivo. The demonstration of this new mode of action furthers the understanding of these broad-spectrum antibiotics that differentially inhibit protein synthesis in prokaryotic and eukaryotic cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Escherichia coli/drug effects , Protein Synthesis Inhibitors/pharmacology , Ribosomal Proteins/antagonists & inhibitors , Ribosome Subunits/metabolism , Crystallography, X-Ray , Nucleosides/pharmacology , Peptide Elongation Factor G , Peptidyl Transferases/antagonists & inhibitors , Prokaryotic Initiation Factor-3 , Protein Binding , Ribosome Subunits/drug effects , Ribosome Subunits/ultrastructure
4.
ACS Chem Biol ; 7(1): 73-86, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22185671
5.
Mol Microbiol ; 80(1): 54-67, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21320180

ABSTRACT

Inhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes. The protein content of the precursor particles is heterogeneous and does not correspond with known assembly intermediates. Mass spectrometry indicates that production of ribosomal proteins in the presence of the antibiotics correlates with the amounts of the individual ribosomal proteins within the precursor particles. Thus, treatment of cells with chloramphenicol or erythromycin leads to an unbalanced synthesis of ribosomal proteins, providing the explanation for formation of assembly-defective particles. The operons for ribosomal proteins show a characteristic pattern of antibiotic inhibition where synthesis of the first proteins is inhibited weakly but gradually increases for the subsequent proteins in the operon. This phenomenon most likely reflects translational coupling and allows us to identify other putative coupled non-ribosomal operons in the Escherichia coli chromosome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ribosomal Proteins/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Chloramphenicol/pharmacology , Erythromycin/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomal Proteins/genetics , Ribosome Subunits/drug effects , Ribosome Subunits/metabolism , Ribosomes/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...