Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.295
Filter
1.
Nat Commun ; 15(1): 5725, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977675

ABSTRACT

The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral , RNA , Binding Sites , RNA/chemistry , RNA/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , Riboswitch , Small Molecule Libraries/chemistry , Traditional Medicine Practitioners
2.
ACS Chem Biol ; 19(7): 1447-1452, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38954594

ABSTRACT

Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.


Subject(s)
Aptamers, Nucleotide , Riboswitch , Aptamers, Nucleotide/chemistry , Nucleic Acid Conformation , Humans
3.
Biochemistry ; 63(13): 1608-1620, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864595

ABSTRACT

Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e., during the transcription elongation of the riboswitch or early in the coding region of the regulated gene. Here, we study the structure of the nascent thiamin pyrophosphate (TPP)-sensing thiC riboswitch in Escherichia coli by using biochemical and enzymatic conventional probing approaches. Our chemical (in-line and lead probing) and enzymatic (nucleases S1, A, T1, and RNase H) probing data provide a comprehensive model of how TPP binding modulates the structure of the thiC riboswitch. Furthermore, by using transcriptional roadblocks along the riboswitch sequence, we find that a certain portion of nascent RNA is needed to sense TPP that coincides with the formation of the P5 stem loop. Together, our data suggest that conventional techniques may readily be used to study cotranscriptional folding of nascent RNAs.


Subject(s)
Escherichia coli , Nucleic Acid Conformation , RNA Folding , Riboswitch , Thiamine Pyrophosphate , Riboswitch/genetics , Thiamine Pyrophosphate/metabolism , Thiamine Pyrophosphate/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Gene Expression Regulation, Bacterial , Bacterial Proteins
4.
ACS Synth Biol ; 13(7): 2238-2245, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38913391

ABSTRACT

Artificial riboswitches responsive to user-defined analytes can be constructed by successfully inserting in vitro selected aptamers, which bind to the analytes, into untranslated regions of mRNA. Among them, eukaryotic riboswitches are more promising as biosensors than bacterial ones because they function well at ambient temperature. In addition, cell-free expression systems allow the broader use of these riboswitches as cell-free biosensors in an environmentally friendly manner without cellular limitations. The current best cell-free eukaryotic riboswitch regulates eukaryotic canonical translation initiation through self-cleavage mediated by an implanted analyte-responsive ribozyme (i.e., an aptazyme, an aptamer-ribozyme fusion). However, it has critical flaws as a sensor: due to the less-active ribozyme used, self-cleavage and translation reactions must be conducted separately and sequentially, and a different aptazyme has to be selected to change the analyte specificity, even if an aptamer for the next analyte is available. We here stepwise engineered novel types of cell-free eukaryotic riboswitches that harness highly active self-cleavage and thus require no reaction partitioning. Despite the single-step and one-pot reaction, these riboswitches showed higher analyte dose dependency and sensitivities than the current best cell-free eukaryotic riboswitch requiring multistep reactions. In addition, the analyte specificity can be changed in an extremely facile way, simply by aptamer substitution (and the subsequent simple fine-tuning for giant aptamers). Given that cell-free systems can be lyophilized for storage and transport, the present one-pot and thus easy-to-handle cell-free biosensors utilizing eukaryotic riboswitches are expected to be widely used for on-the-spot sensing of analytes at ambient temperature.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cell-Free System , RNA, Catalytic , Riboswitch , Temperature , Riboswitch/genetics , Biosensing Techniques/methods , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Bioinformatics ; 40(Supplement_1): i437-i445, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940170

ABSTRACT

MOTIVATION: RNA design is a key technique to achieve new functionality in fields like synthetic biology or biotechnology. Computational tools could help to find such RNA sequences but they are often limited in their formulation of the search space. RESULTS: In this work, we propose partial RNA design, a novel RNA design paradigm that addresses the limitations of current RNA design formulations. Partial RNA design describes the problem of designing RNAs from arbitrary RNA sequences and structure motifs with multiple design goals. By separating the design space from the objectives, our formulation enables the design of RNAs with variable lengths and desired properties, while still allowing precise control over sequence and structure constraints at individual positions. Based on this formulation, we introduce a new algorithm, libLEARNA, capable of efficiently solving different constraint RNA design tasks. A comprehensive analysis of various problems, including a realistic riboswitch design task, reveals the outstanding performance of libLEARNA and its robustness. AVAILABILITY AND IMPLEMENTATION: libLEARNA is open-source and publicly available at: https://github.com/automl/learna_tools.


Subject(s)
Algorithms , RNA , RNA/chemistry , Software , Nucleic Acid Conformation , Riboswitch , Computational Biology/methods , Sequence Analysis, RNA/methods , Synthetic Biology/methods
6.
Microbiol Spectr ; 12(7): e0045024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38819160

ABSTRACT

A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro, while downstream terminator T2 is more efficient in vivo. Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.


Subject(s)
Bacillus thuringiensis , Cyclic GMP , Gene Expression Regulation, Bacterial , Riboswitch , Riboswitch/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cyclic GMP/genetics , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Nucleic Acid Conformation , Transcription, Genetic , Terminator Regions, Genetic/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
7.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742638

ABSTRACT

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Subject(s)
Cobamides , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , RNA, Bacterial , RNA, Messenger , Riboswitch , Riboswitch/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cobamides/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Peptide Chain Initiation, Translational , RNA Helicases/genetics , RNA Helicases/metabolism , Endoribonucleases/metabolism , Endoribonucleases/genetics , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Bacterial Outer Membrane Proteins , Polyribonucleotide Nucleotidyltransferase , Membrane Transport Proteins
8.
Sci Rep ; 14(1): 12555, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821978

ABSTRACT

Fluorescent detection in cells has been tremendously developed over the years and now benefits from a large array of reporters that can provide sensitive and specific detection in real time. However, the intracellular monitoring of metabolite levels still poses great challenges due to the often complex nature of detected metabolites. Here, we provide a systematic analysis of thiamin pyrophosphate (TPP) metabolism in Escherichia coli by using a TPP-sensing riboswitch that controls the expression of the fluorescent gfp reporter. By comparing different combinations of reporter fusions and TPP-sensing riboswitches, we determine key elements that are associated with strong TPP-dependent sensing. Furthermore, by using the Keio collection as a proxy for growth conditions differing in TPP levels, we perform a high-throughput screen analysis using high-density solid agar plates. Our study reveals several genes whose deletion leads to increased or decreased TPP levels. The approach developed here could be applicable to other riboswitches and reporter genes, thus representing a framework onto which further development could lead to highly sophisticated detection platforms allowing metabolic screens and identification of orphan riboswitches.


Subject(s)
Biosensing Techniques , Escherichia coli , Metabolic Networks and Pathways , Riboswitch , Thiamine Pyrophosphate , Riboswitch/genetics , Biosensing Techniques/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Thiamine Pyrophosphate/metabolism , Metabolic Networks and Pathways/genetics , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Genes, Reporter , Gene Expression Regulation, Bacterial , Genome, Bacterial
9.
J Chem Inf Model ; 64(11): 4570-4586, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38800845

ABSTRACT

It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding. However, RNAs are still considered challenging targets due to their complex structural dynamics and high charge density. Thus, elucidating relevant features of drug-RNA binding is fundamental for advancing drug discovery. Here, by using Molecular Dynamics simulations, we compare key features of ligand binding to proteins with those observed in RNA. Specifically, we explore similarities and differences in terms of (i) conformational flexibility of the target, (ii) electrostatic contribution to binding free energy, and (iii) water and ligand dynamics. As a test case, we examine binding of the same ligand, namely riboflavin, to protein and RNA targets, specifically the riboflavin (RF) kinase and flavin mononucleotide (FMN) riboswitch. The FMN riboswitch exhibited enhanced fluctuations and explored a wider conformational space, compared to the protein target, underscoring the importance of RNA flexibility in ligand binding. Conversely, a similar electrostatic contribution to the binding free energy of riboflavin was found. Finally, greater stability of water molecules was observed in the FMN riboswitch compared to the RF kinase, possibly due to the different shape and polarity of the pockets.


Subject(s)
Molecular Dynamics Simulation , RNA , Riboflavin , Riboswitch , Riboflavin/chemistry , Riboflavin/metabolism , Ligands , RNA/chemistry , RNA/metabolism , Protein Binding , Nucleic Acid Conformation , Thermodynamics , Static Electricity , Protein Conformation , Water/chemistry
10.
SLAS Discov ; 29(4): 100161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788976

ABSTRACT

Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.


Subject(s)
Enzyme Assays , Methyltransferases , Riboswitch , S-Adenosylhomocysteine , S-Adenosylmethionine , S-Adenosylhomocysteine/metabolism , Riboswitch/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Enzyme Assays/methods , S-Adenosylmethionine/metabolism , Fluorescence Resonance Energy Transfer/methods , Methylation , Humans , Fluorescence Polarization/methods , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics
11.
Chem Commun (Camb) ; 60(46): 5972-5975, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767578

ABSTRACT

Here we report two novel synthetic riboswitches that respond to ASP2905 and theophylline and function in reconstituted cell-free protein synthesis (CFPS) system. We encapsulated the CFPS system as well as DNA-templated encoding reporter genes regulated by these orthogonal riboswitches inside liposomes, and achieved switchable and orthogonal control over gene expression by external stimulation with the cognate ligands.


Subject(s)
Artificial Cells , Riboswitch , Theophylline , Theophylline/chemistry , Artificial Cells/chemistry , Artificial Cells/metabolism , Liposomes/chemistry , Gene Expression Regulation , Protein Biosynthesis , Cell-Free System , Genes, Reporter , Ligands
12.
RNA ; 30(8): 992-1010, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38777381

ABSTRACT

Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 µsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.


Subject(s)
Magnesium , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Messenger , Riboswitch , Magnesium/metabolism , Magnesium/chemistry , Magnesium/pharmacology , RNA, Messenger/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ligands , 5' Untranslated Regions , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics
13.
Nat Commun ; 15(1): 3955, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729929

ABSTRACT

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Subject(s)
DNA-Directed RNA Polymerases , Gene Expression Regulation, Bacterial , Lactococcus lactis , Nucleic Acid Conformation , RNA, Bacterial , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Manganese/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Single Molecule Imaging
14.
Methods Mol Biol ; 2726: 347-376, 2024.
Article in English | MEDLINE | ID: mdl-38780738

ABSTRACT

Structural changes in RNAs are an important contributor to controlling gene expression not only at the posttranscriptional stage but also during transcription. A subclass of riboswitches and RNA thermometers located in the 5' region of the primary transcript regulates the downstream functional unit - usually an ORF - through premature termination of transcription. Not only such elements occur naturally, but they are also attractive devices in synthetic biology. The possibility to design such riboswitches or RNA thermometers is thus of considerable practical interest. Since these functional RNA elements act already during transcription, it is important to model and understand the dynamics of folding and, in particular, the formation of intermediate structures concurrently with transcription. Cotranscriptional folding simulations are therefore an important step to verify the functionality of design constructs before conducting expensive and labor-intensive wet lab experiments. For RNAs, full-fledged molecular dynamics simulations are far beyond practical reach because of both the size of the molecules and the timescales of interest. Even at the simplified level of secondary structures, further approximations are necessary. The BarMap approach is based on representing the secondary structure landscape for each individual transcription step by a coarse-grained representation that only retains a small set of low-energy local minima and the energy barriers between them. The folding dynamics between two transcriptional elongation steps is modeled as a Markov process on this representation. Maps between pairs of consecutive coarse-grained landscapes make it possible to follow the folding process as it changes in response to transcription elongation. In its original implementation, the BarMap software provides a general framework to investigate RNA folding dynamics on temporally changing landscapes. It is, however, difficult to use in particular for specific scenarios such as cotranscriptional folding. To overcome this limitation, we developed the user-friendly BarMap-QA pipeline described in detail in this contribution. It is illustrated here by an elaborate example that emphasizes the careful monitoring of several quality measures. Using an iterative workflow, a reliable and complete kinetics simulation of a synthetic, transcription-regulating riboswitch is obtained using minimal computational resources. All programs and scripts used in this contribution are free software and available for download as a source distribution for Linux® or as a platform-independent Docker® image including support for Apple macOS® and Microsoft Windows®.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA Folding , Transcription, Genetic , Riboswitch/genetics , RNA/chemistry , RNA/genetics , Software
15.
Methods Mol Biol ; 2726: 285-313, 2024.
Article in English | MEDLINE | ID: mdl-38780736

ABSTRACT

Applications in biotechnology and bio-medical research call for effective strategies to design novel RNAs with very specific properties. Such advanced design tasks require support by computational tools but at the same time put high demands on their flexibility and expressivity to model the application-specific requirements. To address such demands, we present the computational framework Infrared. It supports developing advanced customized design tools, which generate RNA sequences with specific properties, often in a few lines of Python code. This text guides the reader in tutorial format through the development of complex design applications. Thanks to the declarative, compositional approach of Infrared, we can describe this development as a step-by-step extension of an elementary design task. Thus, we start with generating sequences that are compatible with a single RNA structure and go all the way to RNA design targeting complex positive and negative design objectives with respect to single or even multiple target structures. Finally, we present a "real-world" application of computational design to create an RNA device for biotechnology: we use Infrared to generate design candidates of an artificial "AND" riboswitch, which activates gene expression in the simultaneous presence of two different small metabolites. In these applications, we exploit that the system can generate, in an efficient (fixed-parameter tractable) way, multiple diverse designs that satisfy a number of constraints and have high quality w.r.t. to an objective (by sampling from a Boltzmann distribution).


Subject(s)
Computational Biology , Nucleic Acid Conformation , RNA , Software , RNA/genetics , RNA/chemistry , Computational Biology/methods , Riboswitch/genetics , Biotechnology/methods
16.
Nucleic Acids Res ; 52(9): 5152-5165, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647067

ABSTRACT

Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.


Subject(s)
Genome, Bacterial , RNA, Bacterial , RNA, Untranslated , DNA, Intergenic/genetics , Genome, Bacterial/genetics , Genomics/methods , Riboswitch/genetics , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , RNA, Untranslated/genetics , RNA, Untranslated/classification , RNA, Untranslated/chemistry
17.
Nucleic Acids Res ; 52(10): 5465-5477, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38661206

ABSTRACT

Generative probabilistic models emerge as a new paradigm in data-driven, evolution-informed design of biomolecular sequences. This paper introduces a novel approach, called Edge Activation Direct Coupling Analysis (eaDCA), tailored to the characteristics of RNA sequences, with a strong emphasis on simplicity, efficiency, and interpretability. eaDCA explicitly constructs sparse coevolutionary models for RNA families, achieving performance levels comparable to more complex methods while utilizing a significantly lower number of parameters. Our approach demonstrates efficiency in generating artificial RNA sequences that closely resemble their natural counterparts in both statistical analyses and SHAPE-MaP experiments, and in predicting the effect of mutations. Notably, eaDCA provides a unique feature: estimating the number of potential functional sequences within a given RNA family. For example, in the case of cyclic di-AMP riboswitches (RF00379), our analysis suggests the existence of approximately 1039 functional nucleotide sequences. While huge compared to the known <4000 natural sequences, this number represents only a tiny fraction of the vast pool of nearly 1082 possible nucleotide sequences of the same length (136 nucleotides). These results underscore the promise of sparse and interpretable generative models, such as eaDCA, in enhancing our understanding of the expansive RNA sequence space.


Subject(s)
Computational Biology , Models, Genetic , RNA , Algorithms , Base Sequence , Evolution, Molecular , Models, Statistical , Mutation , Nucleic Acid Conformation , Riboswitch/genetics , RNA/chemistry , RNA/genetics , Sequence Analysis, RNA , Computational Biology/methods
18.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579011

ABSTRACT

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Subject(s)
Neomycin , Riboswitch , Neomycin/metabolism , Neomycin/pharmacology , Molecular Dynamics Simulation , Riboswitch/genetics , Mutation , Molecular Conformation , Nucleic Acid Conformation , Ligands
19.
Methods Enzymol ; 696: 85-107, 2024.
Article in English | MEDLINE | ID: mdl-38658090

ABSTRACT

Fluorinated compounds, whether naturally occurring or from anthropogenic origin, have been extensively exploited in the last century. Degradation of these compounds by physical or biochemical processes is expected to result in the release of fluoride. Several fluoride detection mechanisms have been previously described. However, most of these methods are not compatible with high- and ultrahigh-throughput screening technologies, lack the ability to real-time monitor the increase of fluoride concentration in solution, or rely on costly reagents (such as cell-free expression systems). Our group recently developed "FluorMango" as the first completely RNA-based and direct fluoride-specific fluorogenic biosensor. To do so, we merged and engineered the Mango-III light-up RNA aptamer and the fluoride-specific aptamer derived from a riboswitch, crcB. In this chapter, we explain how this RNA-based biosensor can be produced in large scale before providing examples of how it can be used to quantitatively detect (end-point measurement) or monitor in real-time fluoride release in complex biological systems by translating it into measurable fluorescent signal.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes , Fluorides , Biosensing Techniques/methods , Fluorides/analysis , Fluorides/chemistry , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Riboswitch , RNA/analysis
20.
Front Immunol ; 15: 1360063, 2024.
Article in English | MEDLINE | ID: mdl-38558809

ABSTRACT

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Riboswitch , Mice , Humans , Animals , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Genetic Therapy , Interleukin-12/genetics , Interleukin-12/metabolism , Tetracycline/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...