Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.890
Filter
1.
J Water Health ; 22(5): 835-841, 2024 May.
Article in English | MEDLINE | ID: mdl-38822463

ABSTRACT

Schistosoma mansoni worms cause a waterborne parasitic disease called schistosomiasis. It commonly affects individuals in lack of sanitation structure. In Brazil, Pará state has Belém as one of the worst sanitation-ranking places in 2023, where schistosomiasis transmission was already documented. This study reports the occurrence of schistosomiasis in residents of Ilha das Onças, an island next to Belém. Stool samples were obtained from participants over 2 years old, all residents from Furo do Rio Grande, one of the rivers on the island. The Kato-Katz technique was performed for parasite investigation in the stool samples. Each participant responded to a sociodemographic and clinical questionnaire. The residences were georeferenced for map designing. Three out of 263 participants were S. mansoni positive, all men, ages ranging from 19 to 41 years old, with low parasitic load. Malacological surveys were carried out, but no Biomphalaria snails were found. Risk factors for schistosomiasis establishment are present on the island, and the lack of sanitation makes it a potential risk area. Malacological surveys are highly encouraged as preventive measures, as well as health surveillance for riverside populations, generating data that will help health authorities in the management and planning of preventive control actions.


Subject(s)
Rivers , Schistosoma mansoni , Schistosomiasis mansoni , Humans , Brazil/epidemiology , Adult , Schistosomiasis mansoni/epidemiology , Male , Schistosoma mansoni/isolation & purification , Animals , Young Adult , Rivers/parasitology , Female , Feces/parasitology , Adolescent , Middle Aged , Child
2.
Water Sci Technol ; 89(10): 2676-2684, 2024 May.
Article in English | MEDLINE | ID: mdl-38822607

ABSTRACT

The Periyar River, a vital component of Kerala's ecosystem in India, serves as a lifeline supporting agriculture, hydropower generation, and ecological equilibrium. This study adopts a multifaceted approach to address critical challenges in the Periyar basin, with a primary focus on flood mitigation due to the region's susceptibility to devastating floods. Covering a length of 67.85 km, the study intricately segments the Periyar River into distinct reaches for a comprehensive steady flow analysis, considering factors such as seasonal monsoon fluctuations, diverse catchment topography, and human-induced alterations. Utilizing advanced modeling techniques, particularly HEC-RAS software, the study effectively predicts and simulates shifts in hydraulic behavior. The results, including velocity plots and cross-sectional maps, offer accurate insights into critical parameters, enabling the identification of areas with high velocity occurrence. This information proves instrumental in making informed decisions for the construction of river restoration structures, crucial for mitigating the impact of floods. The study's findings contribute valuable tools for future forecasting and sustainable management of the Periyar River, addressing the complex interplay of natural and anthropogenic factors.


Subject(s)
Models, Theoretical , Rivers , Water Movements , Rivers/chemistry , India , Floods
3.
Bull Environ Contam Toxicol ; 112(6): 81, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822856

ABSTRACT

The growing production of urban solid waste is a structural problem faced by most cities around the world. The proliferation of mini-open dumps (MOD; small spontaneous open-air waste dumps formed in urban and peri-urban areas) on the banks of the Paraná River is particularly evident. During the historical drought (June-December 2021), we carried out sampling campaigns identifying MODs of the Santa Fe River, a secondary channel of the Paraná River. MOD were geolocated, measured, described and classified by origin. The distance to the river and other sensitive places was considered (houses-schools-health facilities). Our results suggested a serious environmental issue associated with poor waste management. MOD were extremely abundant in the study area, being mostly composed of domestic litter. Plastics clearly dominated the MOD composition. Burning was frequently observed as a method to reduce the volume of MOD. We concluded that the proliferation of MOD is a multi-causal problem associated with a failure of public policies and a lack of environmental education.


Subject(s)
Environmental Monitoring , Rivers , Rivers/chemistry , Environmental Monitoring/methods , Waste Disposal Facilities , Brazil , Waste Management/methods , Cities , Refuse Disposal , Water Pollutants, Chemical/analysis , Solid Waste/analysis
4.
PeerJ ; 12: e17351, 2024.
Article in English | MEDLINE | ID: mdl-38799062

ABSTRACT

To investigate the age structure, growth pattern, mortality and exploitation rates of Leuciscus chuanchicus in the upstream Ningxia section of the Yellow River, four sampling surveys were conducted between 2022 and 2023. A total of 472 individuals were measured for their total length (TL) and body weight (W). Age determination was performed using otoliths. The collected samples had a range of total lengths from 4.52 to 37.45 cm, body weights ranging from 0.68 to 552.43 g, and ages ranging from 1 to 7 years old. The relationship between total length and body weight was expressed as W = 0.0052 L3.19 for all samples, which indicates that the growth of L. chuanchicus adheres to allometry. The Von Bertalanffy growth equation revealed that the fish had an asymptotic total length (L∞) of approximately 37.9 cm with a growth coefficient (K) value of approximately 0.461 yr-1. Using the age-based catch curve method, the calculated total instantaneous mortality rate (Z) for all samples was determined as being equal to approximately 1.1302 yr-1. Additionally, three methods were used to estimate the average instantaneous rate of natural mortality (M), resulting in an approximate value of 0.7167 yr-1 for all samples. Furthermore, the instantaneous rate of fishing mortality (F) for all samples was calculated as 0.4134 yr-1, leading us to determine that the exploitation rate (E) is 0.3658. It was concluded that the growth rate of L. chuanchicus in the upstream of the Yellow River is relatively fast, and L. chuanchicus has not been subjected to excessive exploitation, yet its relatively high natural mortality rate underscores the need for targeted management measures aimed at preserving its habitat.


Subject(s)
Rivers , Animals , China/epidemiology , Cyprinidae/growth & development , Mortality/trends , Fisheries
5.
An Acad Bras Cienc ; 96(suppl 1): e20230866, 2024.
Article in English | MEDLINE | ID: mdl-38808780

ABSTRACT

Hypostomus soniae is a small sized armored catfish endemic to the Tapajos River basin and ranked as one of the most exploited ornamental fish in the Santarem export marketplace. This study aims to evaluate distributional patterns of Hypostomus soniae and contribute to the species conservation in the face of development of the ornamental fish trade in the Amazon region. We compiled data associated with geographic coordinates in public repositories, supplemented with original field records. We compared our data to published records in the literature and museum collections to check for accuracy. To investigate the fishery and commercialization of H. soniae, we conducted interviews with ornamental fish stakeholders from the local trade. We also made direct observations in the fishing sites and export facilities in Santarem. A cluster analysis of the geolocation data was carried out to explore the spatial distribution patterns. The volume of captures and exportation of H. soniae decreased during the period 2020-2023. The occurrence of H. soniae was associated with annual rainfall ranging from 2,000 mm to 2,500 mm and concentrated in two municipalities of the State of Mato Grosso and two of the Para State. The species distribution area has been threatened, unfortunately, by fishermen who do not respect the laws that support artisanal fishing in the Amazon.


Subject(s)
Catfishes , Conservation of Natural Resources , Rivers , Animals , Brazil , Catfishes/classification , Fisheries , Commerce , Animal Distribution
6.
An Acad Bras Cienc ; 96(1): e20221076, 2024.
Article in English | MEDLINE | ID: mdl-38808809

ABSTRACT

Pseudanos is a fish genus with cis-Andean distribution in South America. Pseudanos trimaculatus is originally known from the Amazon and Orinoco basins. Three decades ago, a few specimens collected in the Río de la Plata basin were identified as P. trimaculatus, what remained to be confirmed and understood. The aim of this contribution is to analyze these specimens. Consequently, the morphological variation of P. trimaculatus is discussed and updated. Morphometric and meristic data were taken from the specimens and compared with those of the type and non-type specimens of the species. Multivariate analyses of the size-corrected measurements were used to explore the morphological variation. Size-corrected PCA revealed that the specimens collected in the Río de la Plata basin nested with the remaining specimens, being slightly closer to those from the Guaporé, Napo and Uatumã rivers. Measurements such as caudal peduncle depth, body depth, and body width affected more heavily the first components. Cluster analysis did not show well-defined groups based on the hydrogeographic basins. The studied specimens from the Río de la Plata basin are herein confirmed as conspecific with P. trimaculatus. The species is added to the list of fish species shared between the Amazon and Río de la Plata basins.


Subject(s)
Characiformes , Rivers , Animals , Characiformes/anatomy & histology , Characiformes/classification , Brazil , Animal Distribution , Male , Female
7.
Nat Commun ; 15(1): 4085, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744837

ABSTRACT

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Subject(s)
Ammonia , Ammonium Compounds , Bacteria , Ecosystem , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Ammonium Compounds/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Ammonia/metabolism , Metagenome , Agriculture , Nitrates/metabolism , Denitrification , Nitrification , Metabolic Networks and Pathways/genetics
8.
PLoS One ; 19(5): e0303886, 2024.
Article in English | MEDLINE | ID: mdl-38820528

ABSTRACT

The relationship between primary productivity and diversity has been demonstrated across taxa and spatial scales, but for organisms with biphasic life cycles, little research has examined whether productivity of larval and adult environments influence each life stage independently, or whether productivity of one life stage's environment outweighs the influence of the other. Experimental work demonstrates that tadpoles of stream-breeding anurans can exhibit a top-down influence on aquatic primary productivity (APP), but few studies have sought evidence of a bottom-up influence of primary productivity on anuran abundance, species richness and community composition, as seen in other organisms. We examined aquatic and terrestrial primary productivity in two forest types in Borneo, along with amphibian abundance, species richness, and community composition at larval and adult stages, to determine whether there is evidence for a bottom-up influence of APP on tadpole abundance and species richness across streams, and the relative importance of aquatic and terrestrial primary productivity on larval and adult phases of anurans. We predicted that adult richness, abundance, and community composition would be influenced by terrestrial primary productivity, but that tadpole richness, abundance, and community composition would be influenced by APP. Contrary to expectations, we did not find evidence that primary productivity, or variation thereof, predicts anuran richness at larval or adult stages. Further, no measure of primary productivity or its variation was a significant predictor of adult abundance, or of adult or tadpole community composition. For tadpoles, we found that in areas with low terrestrial primary productivity, abundance was positively related to APP, but in areas with high terrestrial primary productivity, abundance was negatively related to APP, suggesting a bottom-up influence of primary productivity on abundance in secondary forest, and a top-down influence of tadpoles on primary productivity in primary forest. Additional data are needed to better understand the ecological interactions between terrestrial primary productivity, aquatic primary productivity, and tadpole abundance.


Subject(s)
Anura , Biodiversity , Larva , Rivers , Animals , Anura/growth & development , Anura/physiology , Larva/growth & development , Larva/physiology , Tropical Climate , Ecosystem , Borneo , Forests , Population Dynamics
9.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750737

ABSTRACT

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Subject(s)
Biodiversity , Environmental Monitoring , Rivers , Rivers/microbiology , Animals , Fungi , Diatoms/physiology , Invertebrates/physiology , Fishes , Bacteria/classification , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 934: 173198, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750740

ABSTRACT

Land use and climate changes are driving significant shifts in the magnitude and persistence of dryland stream surface flows. The impact of these shifts on ecological functioning is largely unknown, particularly where streams have become wetter rather than drier. This study investigated relationships between hydrologic regime (including surface water persistence, differences in groundwater depth and altered flooding dynamics) with plant traits and riverine vegetation functional composition. Our study system was a previously ephemeral creek in semi-arid northwest Australia that has received groundwater discharge from nearby mining operations for >15 years; surface flows are now persistent for ∼27 km downstream of the discharge point. We aimed to (i) identify plant functional groups (FGs) associated with the creek and adjacent floodplain; and (ii) assess their distribution across hydrological gradients to predict shifts in ecological functioning in response to changing flow regimes. Seven FGs were identified using hierarchical clustering of 40 woody perennial plant species based on morphometric, phenological and physiologic traits. We then investigated how FG abundance (projective foliar cover), functional composition, and functional and taxonomic richness varied along a 14 km gradient from persistent to ephemeral flows, varying groundwater depths, and distances from the stream channel. Dominant FGs were (i) drought avoidant mesic trees that are fluvial stress tolerant, or (ii) drought tolerant xeric tall shrubs that are fluvial stress intolerant. The drought avoidant mesic tree FG was associated with shallow groundwater but exhibited lower cover in riparian areas closer to the discharge (persistent surface flows). However, there were more FGs and higher species richness closer to the discharge point, particularly on the floodplain. Our findings demonstrate that quantifying FG distribution and diversity is a significant step in both assessing the impacts of mine water discharge on riverine ecosystems and for planning for post-mining restoration.


Subject(s)
Rivers , Biodiversity , Environmental Monitoring/methods , Plants , Water Movements , Climate Change , Ecosystem , Northwest Territories , Hydrology , Groundwater
11.
Parasitol Res ; 123(5): 208, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724709

ABSTRACT

In freshwater ecosystems, parasite infection patterns are influenced by factors including spatial-temporal variations, host diet, and habitat. Fish often change diets, affecting their parasite communities. This study focused on non-native host fish Geophagus sveni, aiming to characterize diet and endoparasitic helminth fauna patterns in the invaded area, investigating spatial and seasonal possible differences of endoparasite infections and correlating with host diet, in São José dos Dourados River and Tietê River areas. The host fish were collected in these areas during the dry and rainy season using gillnets. The endoparasites were collected and preserved in alcohol and identified using taxonomic methods, and stomach contents were examined for diet analysis. Parasitism descriptors were calculated and evaluated spatially and seasonally by ANOVA and the Kruskal-Wallis tests. PERMANOVA assessed G. sveni diet differences, and RDA correlated the endohelminth abundance with the host diet. Two endoparasites were recorded: metacercariae of Austrodiplostomum compactum (Trematoda) and larvae and adults of Raphidascaris (Sprentascaris) lanfrediae (Nematoda). Spatial differences were observed for the mean abundance and prevalence of R. (S.) lanfrediae and A. compactum prevalence. Seasonal variations of parasitic descriptors occurred for the nematode in the Tietê River area. The detritus and aquatic insects were the most consumed items by G. sveni. Detritus consumption positively correlates with nematode abundance. The findings indicate that factors such as artificial channels and rainfall, which can influence resource availability, may affect the fish's diet and potentially influence the structure of its endoparasite community. The study emphasizes the importance of understanding trophic chain-transmitted parasites and calls for further research in Neotropical environments.


Subject(s)
Diet , Fish Diseases , Helminthiasis, Animal , Rivers , Seasons , Animals , Rivers/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Trematoda/isolation & purification , Trematoda/classification , Brazil/epidemiology , Nematoda/isolation & purification , Nematoda/classification , Helminths/isolation & purification , Helminths/classification , Gastrointestinal Contents/parasitology
12.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726822

ABSTRACT

Fish of the genus Hypselobarbus (Bleeker 1860) are widely dispersed in the rivers of the Western Ghats in India and endemic to southern Indian peninsular freshwaters. These are small- to medium-sized fishes of the family Cyprinidae. Although fish with deformed bodies or body parts are rare in natural waters, this article deals with four abnormal specimens of Hypselobarbus curmuca (Hamilton 1807) collected from the rivers Tunga, Bhadra, and Kali during 2022. The abnormalities observed in four different individuals are pughead deformity, pelvic fin deformity, pectoral fin deformity, and enlarged scales. The morphological comparison of normal individuals of Hypselobarbus curmuca (Hamilton 1807) with abnormal specimens revealed variation. Using the MT-COI gene, species identity was confirmed and the mean genetic divergence between the normal and abnormal specimens was estimated to be less than 1%.


Subject(s)
Cyprinidae , Rivers , Animals , India/epidemiology , Cyprinidae/genetics , Phylogeny , Electron Transport Complex IV/genetics , Genetic Variation , Animal Fins/anatomy & histology , Animal Fins/abnormalities , Fish Proteins/genetics
13.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710902

ABSTRACT

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Subject(s)
Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Iran , Water Pollutants, Chemical/analysis , Risk Assessment , Humans , Rivers/chemistry , Nitrates/analysis , Phosphates/analysis , Wetlands , Water Pollution, Chemical/statistics & numerical data , Nutrients/analysis , Water Resources
14.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773003

ABSTRACT

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Rivers/chemistry , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Metals/analysis , Characidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Geologic Sediments/chemistry , Fishes/metabolism
15.
Glob Chang Biol ; 30(5): e17336, 2024 May.
Article in English | MEDLINE | ID: mdl-38775780

ABSTRACT

Climate change and land-use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land-use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony-bottomed streams in a 7-week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7-day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment-impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2-enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways.


Subject(s)
Carbon Dioxide , Climate Change , Geologic Sediments , Invertebrates , Rivers , Animals , Carbon Dioxide/analysis , Geologic Sediments/analysis , Invertebrates/physiology , Hot Temperature , Water Movements , Ecosystem
16.
Environ Monit Assess ; 196(6): 566, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775858

ABSTRACT

Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.


Subject(s)
Environmental Monitoring , Microbiota , Rivers , Water Pollutants, Chemical , Rivers/microbiology , Rivers/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Argentina , RNA, Ribosomal, 16S/genetics , Biodegradation, Environmental , Hydrocarbons/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Environmental Restoration and Remediation/methods
17.
Environ Sci Technol ; 58(20): 8932-8945, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38710016

ABSTRACT

A significant challenge that warrants attention is the influence of eutrophication on the biogeochemical cycle of emerging contaminants (ECs) in aquatic environments. Antibiotics pollution in the eutrophic Pearl River in South China was examined to offer new insights into the effects of eutrophication on the occurrence, air-water exchange fluxes (Fair-water), and vertical sinking fluxes (Fsinking) of antibiotics. Antibiotics transferred to the atmosphere primarily through aerosolization controlled by phytoplankton biomass and significant spatiotemporal variations were observed in the Fair-water of individual antibiotics throughout all sites and seasons. The Fsinking of ∑AB14 (defined as a summary of 14 antibiotics) was 750.46 ± 283.19, 242.71 ± 122.87, and 346.74 ± 249.52 ng of m-2 d-1 in spring, summer, and winter seasons. Eutrophication indirectly led to an elevated pH, which reduced seasonal Fair-water of antibiotics, sediment aromaticity, and phytoplankton hydrophobicity, thereby decreasing antibiotic accumulation in sediments and phytoplankton. Negative correlations were further found between Fsinking and the water column daily loss of antibiotics with phytoplankton biomass. The novelty of this study is to provide new complementary knowledge for the regulation mechanisms of antibiotics by phytoplankton biological pump, offering novel perspectives and approaches to understanding the coupling between eutrophication and migration and fate of antibiotics in a subtropical eutrophic river.


Subject(s)
Anti-Bacterial Agents , Eutrophication , Rivers , Rivers/chemistry , Anti-Bacterial Agents/analysis , Phytoplankton , Water Pollutants, Chemical/analysis , Environmental Monitoring , China , Seasons
18.
J Environ Manage ; 359: 121059, 2024 May.
Article in English | MEDLINE | ID: mdl-38710149

ABSTRACT

Water environmental capacity (WEC) is an indicator of environment management. The uncertainty analysis of WEC is more closely aligned with the actual conditions of the water body. It is crucial for accurately formulating pollution total emissions control schemes. However, the current WEC uncertainty analysis method ignored the connection between water quality and discharge, and required a large amount of monitoring data. This study analyzed the uncertainty of the WEC and predicted its economic value based on Copula and Bayesian model for the Yitong River in China. The Copula model was employed to calculate joint probabilities of water quality and discharge. And the posterior distribution of WEC with limited data was obtained by the Bayesian formula. The results showed that the WEC-COD in the Yitong River was 9009.67 t/a, while NH3-N had no residual WEC. Wanjinta Highway Bridge-Kaoshan Town reach had the most serious pollution. In order to make it have WEC, the reduction of COD and NH3-N was 5330.47 t and 3017.87 t. The economic value of WEC-COD was 5.97 × 107 CNY, and the treatment cost was 2.04 × 108 CNY to make NH3-N have residual WEC. The economic value distribution of WEC was extremely uneven, which could be utilized by adjusting the sewage outlet. In addition, since the treated water was discharged into the Sihua Bridge-Wanjinta Highway Bridge reach, the WEC-COD and the economic value were 19,488.51 t/a and 8.24 × 107 CNY. Increasing the flow of rivers could effectively improve WEC and economic value. This study provided an evaluation tool for guiding river water environment management.


Subject(s)
Bayes Theorem , Rivers , China , Uncertainty , Water Quality , Environmental Monitoring/methods
19.
J Environ Manage ; 359: 120864, 2024 May.
Article in English | MEDLINE | ID: mdl-38714029

ABSTRACT

Deforestation rates in the Amazon have markedly increased in the last few years, affecting non-protected and protected areas (PAs). Brazil is a hotspot of Protected Area Downgrading, Downsizing, and Degazettement (PADDD) events, with most events associated with infrastructure projects. Despite the threats dams impose on PAs, there is a knowledge gap in assessing deforestation in PAs around large dams in the Amazon. This study investigates how deforestation affects Biodiversity Protection Areas (BioPAs) and Indigenous Lands around the Jirau and Santo Antônio (JSA) dams (Madeira River, Rondônia) and Belo Monte dam (Xingu River, Pará) in the Brazilian Amazon. We compared clear-cutting between PAs and control areas and the annual rates of forest change between pre-dam and post-dam periods. We discussed deforestation-related factors (e.g., PADDD events and the presence of management plans or councils). Our results show an increase in deforestation after the operation of the dams when environmental control from licensing agencies decreases and other political and economic factors are in practice. Indigenous Lands experienced a significant increase in deforestation around the Belo Monte dam, which is associated with the demarcation process and land conflicts. Surrounding the JSA dams, sustainable use BioPAs showed high deforestation rates, and 27 PADDD events were reported, four directly related to dams. In addition to dams, deforestation was associated with the crisis of Brazilian democracy and the weakening of environmental policies. In conclusion, the weak environmental control from environmental licensing agencies during dam operation and PADDD events have contributed to increased deforestation rates and additional stresses in the Amazon.


Subject(s)
Biodiversity , Conservation of Natural Resources , Brazil , Rivers , Forests
20.
J Environ Manage ; 359: 121018, 2024 May.
Article in English | MEDLINE | ID: mdl-38714033

ABSTRACT

The estimation and prediction of the amount of sediment accumulated in reservoirs are imperative for sustainable reservoir sedimentation planning and management and to minimize reservoir storage capacity loss. The main objective of this study was to estimate and predict reservoir sedimentation using multilayer perceptron-artificial neural network (MLP-ANN) and random forest regressor (RFR) models in the Gibe-III reservoir, Omo-Gibe River basin. The hydrological and meteorological parameters considered for the estimation and prediction of reservoir sedimentation include annual rainfall, annual water inflow, minimum reservoir level, and reservoir storage capacity. The MLP-ANN and RFR models were employed to estimate and predict the amount of sediment accumulated in the Gibe-III reservoir using time series data from 2014 to 2022. ANN-architecture N4-100-100-1 with a coefficient of determination (R2) of 0.97 for the (80, 20) train-test approach was chosen because it showed better performance both in training and testing (validation) the model. The MLP-ANN and RFR models' performance evaluation was conducted using MAE, MSE, RMSE, and R2. The models' evaluation result revealed that the MLP-ANN model outperformed the RFR model. Regarding the train data simulation of MLP-ANN and RFR shown R2 (0.99) and RMSE (0.77); and R2 (0.97) and RMSE (1.80), respectively. On the other hand, the test data simulation of MLP-ANN and RFR demonstrated R2 (0.98) and RMSE (1.32); and R2 (0.96) and RMSE (2.64), respectively. The MLP-ANN model simulation output indicates that the amount of sediment accumulation in the Gibe-III reservoir will increase in the future, reaching 110 MT in 2030-2031, 130 MT in 2050-2051, and above 137 MTin 2071-2072.


Subject(s)
Neural Networks, Computer , Rivers , Ethiopia , Rivers/chemistry , Geologic Sediments/analysis , Hydrology , Models, Theoretical , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...