Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(4)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098439

ABSTRACT

A method for the simultaneous determination of robenidine, halofuginone, lasalocid, monensin, nigericin, salinomycin, narasin, and maduramicin residues in eggs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The sample preparation method used a combination of liquid-liquid extraction (LLE) and solid-phase extraction (SPE) technology to extract and purify these target compounds from eggs. The target compounds were separated by gradient elution using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC). Tandem mass spectrometry was used to quantitatively and qualitatively analyze the target compounds via electrospray ionization (ESI+) and multiple reaction monitoring mode. The HPLC-MS/MS and UPLC-MS/MS methods were validated according to the requirements defined by the European Union and the Food and Drug Administration. The limits of detection and limits of quantification of the eight coccidiostats in eggs were 0.23-0.52 µg/kg and 0.82-1.73 µg/kg for HPLC-MS/MS, and 0.16-0.42 µg/kg and 0.81-1.25 µg/kg for UPLC-MS/MS, respectively. The eggs were spiked with four concentrations of the eight coccidiostats, and the HPLC-MS/MS and UPLC-MS/MS average recoveries were all higher than 71.69% and 72.26%, respectively. Compared with the HPLC-MS/MS method, utilizing UPLC-MS/MS had the advantages of low reagent consumption, a short detection time, and high recovery and precision. Finally, the HPLC-MS/MS and UPLC-MS/MS methods were successfully applied to detect eight coccidiostats in 40 eggs.


Subject(s)
Coccidiosis/diagnosis , Eggs/parasitology , Food Analysis/methods , Poultry/parasitology , Animals , Chickens/metabolism , Chickens/parasitology , Chromatography, Liquid , Coccidiosis/metabolism , Coccidiosis/parasitology , Coccidiosis/veterinary , Humans , Lactones/isolation & purification , Lactones/metabolism , Lasalocid/isolation & purification , Lasalocid/metabolism , Liquid-Liquid Extraction , Monensin/isolation & purification , Monensin/metabolism , Nigericin/isolation & purification , Nigericin/metabolism , Piperidines/isolation & purification , Piperidines/metabolism , Pyrans/isolation & purification , Pyrans/metabolism , Quinazolinones/isolation & purification , Quinazolinones/metabolism , Robenidine/isolation & purification , Robenidine/metabolism , Tandem Mass Spectrometry , United States , United States Food and Drug Administration
2.
Chemosphere ; 86(2): 212-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22047618

ABSTRACT

Two anticoccidial agents, salinomycin and robenidine, heavily used in the worldwide veterinary meat production, were investigated for their potential biotic degradation by cultured soil bacteria. The degradation-study was performed in lab-scale bio-reactors under aerobic and anaerobic conditions incubated for 200 h with a mixed culture of soil bacteria. Samples were analyzed by LC-MS/MS and potential transformation products were tentatively identified. Salinomycin was degraded under aerobic conditions and traces could be found after 200 h, however, seems more persistent under anaerobic conditions. Four transformation products of salinomycin were discovered. Robenidine was degraded under aerobic and anaerobic conditions, however, traces of robenidine were observed after 200 h. Five biotic transformation products of robenidine were discovered.


Subject(s)
Coccidiostats/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Bioreactors , Chromatography, High Pressure Liquid , Coccidiostats/analysis , Pyrans/analysis , Pyrans/metabolism , Robenidine/analysis , Robenidine/metabolism , Soil Microbiology , Soil Pollutants/analysis , Tandem Mass Spectrometry , Time Factors
3.
J Am Chem Soc ; 124(46): 13680-1, 2002 Nov 20.
Article in English | MEDLINE | ID: mdl-12431090

ABSTRACT

A combination of biophysical techniques has been used to characterize the interaction of an antitrypanosomal agent, CGP 40215A, with DNA. The results from a broad array of methods (DNase I footprinting, surface plasmon resonance, X-ray crystallography, and molecular dynamics) indicate that this compound binds to the minor groove of AT DNA sequences. Despite its unusual linear shape that is not complementary to that of the DNA groove, a high binding affinity was observed in comparison with other similar but more curved diamidine compounds. The amidine groups at both ends of the ligand and the -NH groups on the linker are involved in extensive and dynamic H-bonds to the DNA bases. Complementary and consistent results were obtained from both the X-ray and molecular dynamics studies; both of these methods reveal direct and water-mediated H-bonds between the ligand and the DNA.


Subject(s)
DNA/chemistry , Robenidine/analogs & derivatives , Robenidine/chemistry , DNA/metabolism , Models, Molecular , Molecular Conformation , Nucleic Acid Conformation , Pentamidine/analogs & derivatives , Robenidine/metabolism , Robenidine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...