Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.926
Filter
1.
Ecohealth ; 21(1): 1-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38748281

ABSTRACT

From July 2020 to June 2021, 248 wild house mice (Mus musculus), deer mice (Peromyscus maniculatus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) from Texas and Washington, USA, and British Columbia, Canada, were tested for SARS-CoV-2 exposure and infection. Two brown rats and 11 house mice were positive for neutralizing antibodies using a surrogate virus neutralization test, but negative or indeterminate with the Multiplexed Fluorometric ImmunoAssay COVID-Plex, which targets full-length spike and nuclear proteins. Oro-nasopharyngeal swabs and fecal samples tested negative by RT-qPCR, with an indeterminate fecal sample in one house mouse. Continued surveillance of SARS-CoV-2 in wild rodents is warranted.


Subject(s)
Animals, Wild , COVID-19 , Cities , Animals , Mice , Rats/virology , COVID-19/epidemiology , Animals, Wild/virology , SARS-CoV-2 , Peromyscus/virology , Feces/virology , Rodent Diseases/virology , Rodent Diseases/epidemiology , Antibodies, Neutralizing/blood
2.
J Comp Pathol ; 211: 36-41, 2024 May.
Article in English | MEDLINE | ID: mdl-38772057

ABSTRACT

Biopsy data on externally palpable masses in pet rats (Rattus norvegicus) were retrieved from the archives of a large commercial pathology laboratory between November 2013 and July 2021. A total of 330 samples were submitted from 292 individual animals. Of the 330 samples submitted, 182 (55.2%) were of mammary gland origin and the majority were benign neoplasms, with fibroadenoma most frequent. Of the remaining 148 samples, 101 were neoplastic in nature, with 76 tumours classified as mesenchymal, 23 as epithelial and two classified only as malignant neoplasia not otherwise specified. Malignant neoplasms accounted for 88 of these non-mammary masses, with the most diagnosed tumours including soft tissue sarcoma (including fibrosarcoma) and sarcomas not otherwise specified.


Subject(s)
Rodent Diseases , Animals , Rats , Retrospective Studies , Female , Biopsy/veterinary , Rodent Diseases/pathology
3.
J Anim Ecol ; 93(6): 650-653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706185

ABSTRACT

Research Highlight: Mistrick, J., Veitch, J. S. M., Kitchen, S. M., Clague, S., Newman, B. C., Hall, R. J., Budischak, S. A., Forbes, K. M., & Craft, M. E. (2024). Effects of food supplementation and helminth removal on space use and spatial overlap in wild rodent populations. Journal of Animal Ecology. http://doi.org/10.1111/1365-2656.14067. The spread of pathogens has been of long-standing interest, even before dramatic outbreaks of avian influenza and the coronavirus pandemic spiked broad public interest. However, the dynamics of pathogen spread in wild populations are complex, with multiple effects shaping where animals go (their space use), population density and, more fundamentally, the resultant patterns of contacts (direct or indirect) among individuals. Thus, experimental studies exploring the dynamics of contact under different sets of conditions are needed. In the current field study, Mistrick et al. (2024) used a multifactorial experimental design, manipulating food availability and individual pathogen infection state in wild bank voles (Clethrionomys glareolus). They found that while food availability, individual traits and seasonality can affect how far individual voles moved, the degree of overlap between individual voles remained largely the same despite a high variation in population density-which itself was affected by food availability. These results highlight how biotic and abiotic factors can shape patterns of space use and balance the level of spatial overlap through multiple pathways.


Subject(s)
Arvicolinae , Animals , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Rodent Diseases/virology , Prevalence , Animals, Wild , Male , Female
4.
PLoS Negl Trop Dis ; 18(5): e0012142, 2024 May.
Article in English | MEDLINE | ID: mdl-38739651

ABSTRACT

BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Parks, Recreational , Phylogeny , Seoul virus , Animals , Seoul virus/genetics , Seoul virus/isolation & purification , Seoul virus/classification , Rats/virology , France/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/veterinary , Hemorrhagic Fever with Renal Syndrome/transmission , Animals, Wild/virology , Humans , Cities/epidemiology , Rodent Diseases/virology , Rodent Diseases/epidemiology
5.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38595949

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
6.
Open Vet J ; 14(1): 428-437, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633156

ABSTRACT

Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.


Subject(s)
Hypogonadism , Obesity , Rodent Diseases , Rats , Male , Animals , Leptin/metabolism , Leptin/therapeutic use , Orlistat/metabolism , Orlistat/pharmacology , Orlistat/therapeutic use , Testis/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/veterinary , Hypogonadism/metabolism , Hypogonadism/veterinary , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/therapeutic use , Magnetic Iron Oxide Nanoparticles
7.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
8.
J Vector Borne Dis ; 61(1): 43-50, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648405

ABSTRACT

BACKGROUND OBJECTIVES: Leptospirosis is an important zoonotic infection that has caused significant mortality and morbidity worldwide. This disease is endemic in Malaysia and as a developing tropical country, leptospirosis is concerning as it threatens Malaysian public health and the country's economic sectors. However, there is limited information on leptospirosis in Malaysia, especially regarding leptospiral seroepidemiology among carriers in Malaysia. Therefore, more epidemiological information on the source of the disease and reservoir are needed for better disease control and source intervention. The objectives of this study are to gather information on Leptospira infection and the carrier status of rats captured from selected wet markets of Kuala Lumpur metropolitan city in Malaysia. METHODS: Live rat trappings were performed in four major wet markets in Kuala Lumpur, namely, Pudu, Chow Kit, Datuk Keramat, and Petaling Street. Animal samplings were performed for 12 months in 2017, where blood and kidney samples were collected and tested for anti-leptospiral antibodies via Microscopic Agglutination Test (MAT) and pathogenic Leptospira screening via Polymerase Chain Reaction (PCR) amplification offlaB gene. RESULTS: MAT showed that 34.7% (n = 50/144) of the captured rats were positive for anti-leptospiral antibody of which the most prominent serovar was Malaya followed by a local strain, IMR LEP 175. In parallel, 50 rats were also positive for pathogenic Leptospira DNA. INTERPRETATION CONCLUSION: This study showed that there are persistent Leptospira infections among rats in Kuala Lumpur wet markets and these rats are important reservoir hosts for the bacteria.


Subject(s)
Antibodies, Bacterial , Leptospira , Leptospirosis , Animals , Malaysia/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Rats , Leptospira/genetics , Leptospira/isolation & purification , Antibodies, Bacterial/blood , Carrier State/microbiology , Carrier State/epidemiology , Seroepidemiologic Studies , Male , Disease Reservoirs/microbiology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Female , Polymerase Chain Reaction , Agglutination Tests
9.
Vet Parasitol Reg Stud Reports ; 50: 101014, 2024 05.
Article in English | MEDLINE | ID: mdl-38644045

ABSTRACT

The present pilot research was focused on the detection of intestinal parasites in the ground squirrel populations in various regions of Slovakia. Only a very little information is currently available on the parasitic species composition of the European ground squirrel in Slovakia and across Europe. In the Slovak Republic, there are 70 locations where the ground squirrel populations are present. A total of 600 faecal samples of the European ground squirrels, collected from 36 locations all over Slovakia, were examined by applying the coprological method. The presence of the protozoan coccidian parasite of the Eimeria genus was confirmed in all of the analysed locations. The presence of eggs of four helminths were confirmed: Capillaria spp. (66.6% of locations); the Trichostrongylidae family (42.8% of locations); Hymenolepis spp. (11.9% of locations); and Citellina spp. (7.14% of locations). Dead individuals that were found in the analysed localities were subjected to necropsy and the tissues scraped off their small intestines were stained in order to confirm the presence of parasites. The post-mortem examination of the intestines and the sedimentation of the intestinal contents in a saline solution did not result in the confirmation of the presence of the eggs, adults or the larval stages of parasites. Spermophilus citellus is one of the strictly protected animal species in Slovakia. In recent years, numerous projects aimed at supporting and protecting ground squirrels have been implemented. The present pilot study on intestinal parasites and the subsequent cooperation with environmental activists will contribute to the support and stabilisation of the presence of these animals in our country.


Subject(s)
Endangered Species , Feces , Intestinal Diseases, Parasitic , Sciuridae , Animals , Sciuridae/parasitology , Slovakia/epidemiology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Pilot Projects , Eimeria/isolation & purification , Eimeria/classification
11.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
12.
Open Vet J ; 14(1): 316-323, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633179

ABSTRACT

Background: Paracetamol is one of the most popular drugs; it is used daily by many people especially the elderly, without a limitation on the length of the period allowed for continuous use. Harms from long-term use are less clear, particularly in extrahepatic regions. Aim: This study aimed to investigate whether using paracetamol at a non-observable adverse effect level dose, known not to cause toxic effects, for a long period can induce toxicity in aged male albino rats. Methods: A daily dose of 500 mg per kg body weight of paracetamol was given to adult male albino rats for 12 weeks. During this period, rats were sacrificed at 4, 6, 8, 10, and 12 weeks to evaluate the toxic changes at several time intervals. Results: Chemical analysis revealed elevated serum alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine, and declined level of total protein in N-acetyl-p-aminophenol (APAP)-treated group; it also caused oxidative stress, as shown by decreased glutathione, superoxide dismutase, and elevated malondialdehyde in the liver, kidney, and brain. Histopathological examination demonstrated cytoplasmic vacuolation and sinusoidal congestion with the development of single-cell necrosis in the liver. Renal tubular necrosis, glomerular atrophy, and ischemic neuronal injury, especially in the hippocampus were observed. the deleterious effects of APAP were increased in severity with increasing the period of treatment. Conclusion: Our results suggest that acetaminophen in a subtoxic dose for a long period could result in mild toxic effects on the liver but more serious lesions in the kidney and brain.


Subject(s)
Kidney Diseases , Rodent Diseases , Humans , Rats , Male , Animals , Acetaminophen/metabolism , Acetaminophen/pharmacology , No-Observed-Adverse-Effect Level , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Kidney Diseases/veterinary
13.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633182

ABSTRACT

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Subject(s)
Acute Lung Injury , Aloe , Chitosan , Nanoparticles , Rodent Diseases , Rats , Animals , Chitosan/chemistry , Chitosan/pharmacology , NF-kappa B/pharmacology , Staphylococcus aureus , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Nanoparticles/chemistry , Signal Transduction , Anti-Bacterial Agents/pharmacology , Acute Lung Injury/veterinary , Inflammation/veterinary , RNA, Messenger/pharmacology
14.
Vet Res ; 55(1): 46, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589976

ABSTRACT

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Rodent Diseases , Humans , Animals , Rabbits , Mice , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Proto-Oncogene Proteins c-akt , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/veterinary , Lung/pathology , Bacteremia/veterinary , Bacteremia/pathology , Apoptosis , Mammals , Forkhead Box Protein O1
15.
Fish Shellfish Immunol ; 148: 109478, 2024 May.
Article in English | MEDLINE | ID: mdl-38452957

ABSTRACT

Multidrug-resistant Streptococcus parauberis causes high fish mortality in aquaculture, necessitating an urgent need for innovative control strategies. This study aimed to develop an immunizing agent against S. parauberis using exosomes isolated from the plasma of olive flounders infected experimentally with S. parauberis (Sp-Exo). Initially, we tested the in vitro immunomodulatory effect of Sp-Exo in murine macrophage RAW264.7 cells and compared it to that of exosomes isolated from naïve fish (PBS-Exo-treated). Notably, Sp-Exo treatment significantly (p < 0.05) upregulated pro-and anti-inflammatory cytokines (Il1ß, Tnfα, and Il10), antimicrobial peptide, defensin isoforms (Def-rs2 and Def-ps1), and antiviral (Ifnß1 and Isg15) genes. In vivo studies in larval and adult zebrafish revealed similar patterns of immunomodulation. Furthermore, larval and adult zebrafish exhibited significantly (p < 0.05) enhanced resistance to S. parauberis infection following treatment with Sp-Exo compared to that with PBS-Exo. Proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) approach revealed the presence of 77 upregulated and 94 downregulated differentially expressed proteins (DEPs) in Sp-Exo, with 22 and 37 significantly (p < 0.05) upregulated and downregulated DEPs, respectively. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Search Tool for the Retrieval of Interacting Genes/Proteins analyses revealed that these genes are associated with key pathways, such as innate immune responses, complement system, acute phase responses, phospholipid efflux, and chylomicron remodeling. In conclusion, Sp-Exo demonstrated superior immunomodulatory activity and significant resistance against S. parauberis infection relative to that on treatment with PBS-Exo. Proteomic analysis further verified that most DEPs in Sp-Exo were associated with immune induction or modulation. These findings highlight the potential of Sp-Exo as a promising vaccine candidate against S. parauberis and other bacterial infections in olive flounder.


Subject(s)
Exosomes , Fish Diseases , Flounder , Rodent Diseases , Streptococcal Infections , Streptococcus , Animals , Mice , Flounder/microbiology , Zebrafish , Disease Resistance , Proteomics
16.
Fish Shellfish Immunol ; 148: 109508, 2024 May.
Article in English | MEDLINE | ID: mdl-38519003

ABSTRACT

Bacterial extracellular vesicles (BEVs) are nanosized structures that play a role in intercellular communication and transport of bioactive molecules. Streptococcus parauberis is a Gram-positive pathogenic bacterium that causes "Streptococcosis" in fish. In this study, we isolated S. parauberis-derived extracellular vesicles (SpEVs), and then physicochemical and immunomodulatory properties were determined to elucidate their biological functions. Initially, the biogenesis of SpEVs was detected using field emission scanning electron microscopy, which revealed that secretory phase SpEVs attached to the outer surface of S. parauberis. SpEVs had an average particle diameter and zeta potential of 168.3 ± 6.5 nm and -17.96 ± 2.11 mV, respectively. Field emission transmission electron microscopy analysis confirmed the presence of round or oval-shaped SpEVs with clear membrane margins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed three sharp protein bands when SpEVs were stained with Coomassie blue. In vitro toxicity of SpEVs was assayed using the murine macrophage RAW 264.7 cells and we observed no significant (p < 0.05) viability reduction up to 50 µg/mL qRT-PCR results revealed that SpEVs-treated (5 and 10 µg/mL) RAW 264.7 cells significantly (p < 0.05) induced the mRNA of proinflammatory (Il1ß, Il6, and Tnfα) and anti-inflammatory (Il10) cytokines in a concentration-dependent manner. In vivo immunomodulatory effects of SpEVs were investigated by injecting SpEVs (5 and 10 µg/fish) into adult zebrafish. Transcriptional analysis based on qRT-PCR indicates significant (p < 0.05) upregulation of proinflammatory (il1ß, il6, and tnfα) and anti-inflammatory (il10) genes in a concentration-dependent manner in zebrafish kidney. Further, protein expression results in zebrafish spleen tissue confirmed the immunomodulatory activity of SpEVs. In conclusion, SpEVs display the characteristics of BEVs and immunomodulatory activities, suggesting their potential application as vaccine candidate.


Subject(s)
Extracellular Vesicles , Fish Diseases , Rodent Diseases , Streptococcus , Animals , Mice , Zebrafish , Interleukin-10 , Tumor Necrosis Factor-alpha , Interleukin-6 , Anti-Inflammatory Agents
17.
Mol Ecol ; 33(7): e17309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429967

ABSTRACT

Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land-use change has been found to increase the abundance of rodents that thrive in human-built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long-read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped-forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape- and habitat-level anthropogenic factors affect Peromyscus microbiomes and suggest that landscape-level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.


Subject(s)
Peromyscus , Rodent Diseases , Animals , Humans , Prevalence , Ecosystem , Rodentia , Bacteria/genetics , Rodent Diseases/microbiology , Agriculture
18.
BMC Vet Res ; 20(1): 117, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521906

ABSTRACT

BACKGROUND: In Bosnia and Herzegovina, domestic and wild carnivores represent a significant driver for the transmission and ecology of zoonotic pathogens, especially those of parasitic aetiology. Nevertheless, there is no systematic research of Trichinella species in animals that have been conducted in Bosnia and Herzegovina, even though trichinellosis is considered the most important parasitic zoonosis. The available results of the few studies carried out in Bosnia and Herzegovina are mainly related to the confirmation of parasitic larvae in the musculature of domestic pigs and wild boars or data related to trichinellosis in humans. The objective of our study was to present the findings of a comprehensive investigation into the species composition of Trichinella among 11 carnivorous species within the territory of Bosnia and Herzegovina, as follows: red fox (Vulpes vulpes), grey wolf (Canis lupus), brown bear (Ursus arctos), wildcat (Felis silvestris), pine marten (Martes martes), European badger (Meles meles), weasel (Mustela nivalis), European polecat (Mustela putorius), Eurasian lynx (Lynx lynx), but also dog (Canis lupus familiaris) and cat (Felis catus). RESULTS: In the period 2013-2023, carnivore musculature samples (n = 629), each consisting of 10 g of muscle tissue, were taken post-mortem and individually examined using the artificial digestion method. In the positive samples (n = 128), molecular genotyping and identification of parasitic larvae of Trichinella spp. were performed using a PCR-based technique up to the species/genotype level. Positive samples were used for basic PCR detection of the genus Trichinella (rrnS rt-PCR technique) and genotyping (rrnl-EVS rt-PCR technique). The Trichinella infection was documented for the first time in Bosnia and Herzegovina among red foxes, grey wolves, brown bears, dogs, badgers and Eurasian lynx, with a frequency rate of 20.3%. Additionally, the presence of T. britovi infection was newly confirmed in Bosnia and Herzegovina, marking the initial documented cases. Furthermore, both T. britovi and T. pseudospiralis infections were observed in the wildcat population, whereas T. britovi and T. spiralis infections were detected in pine martens. Consistent with previous research, our findings align particularly regarding carnivores, with data from other countries such as Germany, Finland, Romania, Poland and Spain, where T. britovi exhibits a wider distribution (62.5-100%) compared to T. spiralis (0.0-37.5%). T. britovi is more common among sylvatic carnivores (89.0%), while T. spiralis prevails in wild boars (62.0%), domestic swine (82.0%) and rodents (75.0%). CONCLUSION: The results of our study represent the first molecular identification of species of the genus Trichinella in Bosnia and Herzegovina. Additionally, our findings underscore the necessity for targeted epidemiological studies to thoroughly assess trichinellosis prevalence across diverse animal populations. Considering the relatively high frequency of trichinellosis infection in investigated animal species and its public health implications, there is an evident need for establishing an effective trichinellosis surveillance system in Bosnia and Herzegovina.


Subject(s)
Carnivora , Cat Diseases , Dog Diseases , Lynx , Mustelidae , Rodent Diseases , Swine Diseases , Trichinella , Trichinellosis , Ursidae , Wolves , Humans , Animals , Swine , Dogs , Cats , Trichinella/genetics , Trichinellosis/epidemiology , Trichinellosis/veterinary , Bosnia and Herzegovina/epidemiology , Sus scrofa , Carnivora/parasitology , Rodentia , Ferrets , Foxes/parasitology , Larva , Swine Diseases/epidemiology
19.
Vet Res ; 55(1): 35, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520031

ABSTRACT

The increase in the emergence of antimicrobial resistance has led to great challenges in controlling porcine extraintestinal pathogenic Escherichia coli (ExPEC) infections. Combinations of antimicrobial peptides (AMPs) and antibiotics can synergistically improve antimicrobial efficacy and reduce bacterial resistance. In this study, we investigated the antibacterial activity of porcine myeloid antimicrobial peptide 36 (PMAP-36) in combination with tetracycline against porcine ExPEC PCN033 both in vitro and in vivo. The minimum bactericidal concentrations (MBCs) of AMPs (PMAP-36 and PR-39) against the ExPEC strains PCN033 and RS218 were 10 µM and 5 µM, respectively. Results of the checkerboard assay and the time-kill assay showed that PMAP-36 and antibiotics (tetracycline and gentamicin) had synergistic bactericidal effects against PCN033. PMAP-36 and tetracycline in combination led to PCN033 cell wall shrinkage, as was shown by scanning electron microscopy. Furthermore, PMAP-36 delayed the emergence of PCN033 resistance to tetracycline by inhibiting the expression of the tetracycline resistance gene tetB. In a mouse model of systemic infection of PCN033, treatment with PMAP-36 combined with tetracycline significantly increased the survival rate, reduced the bacterial load and dampened the inflammatory response in mice. In addition, detection of immune cells in the peritoneal lavage fluid using flow cytometry revealed that the combination of PMAP-36 and tetracycline promoted the migration of monocytes/macrophages to the infection site. Our results suggest that AMPs in combination with antibiotics may provide more therapeutic options against multidrug-resistant porcine ExPEC.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Extraintestinal Pathogenic Escherichia coli/genetics , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Tetracyclines , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Swine Diseases/drug therapy
20.
Comp Immunol Microbiol Infect Dis ; 108: 102159, 2024 May.
Article in English | MEDLINE | ID: mdl-38490118

ABSTRACT

Whole-cell inactivated vaccines (bacterins) are the only licensed vaccines available for leptospirosis prevention and control, especially in domestic and farm animals. However, despite their widespread use, inconsistencies in their efficacy have been reported. Because immunity induced by bacterins is mainly mediated by antibodies against leptospiral lipopolysaccharides, the involvement of cellular responses is not well-known. The aim of this study was to investigate the efficacy and characterize the humoral and cellular immune responses induced by whole-cell inactivated leptospirosis bacterin formulations containing serovars Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjoprajitno, and Pomona. For the potency test, hamsters were immunized with one dose of polyvalent bacterins (either commercial or experimental) and then challenged with a virulent Pomona strain. Serological (MAT and IgM and IgG-ELISA) and cellular (cytokine transcription in blood evaluated by RT-qPCR) analyses were performed. The results revealed that vaccination with either bacterin formulation was able to protect 90-100% of the hamsters infected with the Pomona serovar, although most of the surviving animals remained as renal carriers. Specific agglutinating antibodies and significant levels of IgM, IgG, and IgG2 (P < 0.05) that were able to react with the six serovars present in the vaccine formulations were produced, indicating that the vaccines can potentially provide immunity against all strains. The protective immunity of these vaccines was mainly mediated by balanced a Th1/Th2 response, characterized by increased IFN-γ, IL-10 and IL-α transcription. These data support the importance of characterizing immunological responses involved in bacterin efficacy and investing in the improvement of these vaccine formulations.


Subject(s)
Leptospira , Leptospirosis , Rodent Diseases , Cricetinae , Animals , Vaccines, Combined , Cytokines , Leptospirosis/veterinary , Bacterial Vaccines , Antibodies, Bacterial , Immunoglobulin G , Immunoglobulin M
SELECTION OF CITATIONS
SEARCH DETAIL
...