Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.962
Filter
1.
Vet Med Sci ; 10(5): e70039, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239737

ABSTRACT

Trixacarus caviae is a sarcoptic mange mite infesting guinea pigs. Infestation in immunosuppressed animals produces severe dermatological problems, including alopecia, intense pruritus, hyperkeratosis and non-dermatological issues (e.g., seizures). Treatment options are limited and include topical application of macrocyclic lactones or amitraz or injectable administration of ivermectin or doramectin. Considering the severity of the disease and the challenging treatment, the present paper aimed to determine the efficacy of oral afoxolaner in a severe case of infestation with T. caviae in a pet guinea pig. One female guinea pig was referred to the New Companion Animal Clinic due to severe dermatological problems. A clinical evaluation was done, and skin scrapings were collected and examined under the microscope. Small mites were detected and morphologically identified as T. caviae. The animal was treated with a single oral dose of 2.50 mg/kg afoxolaner, and the lesions, presence/absence of mites and intensity of pruritus were evaluated periodically until 2 months post-treatment. A week after the medication, the lesions were milder, but pruritus was still present and was attributed to the healing process. Further examinations showed significant improvement with the complete remission of clinical signs and no mites at the microscopic examination after 4 weeks. Afoxolaner was safe and effective in this guinea pig for the treatment of T. caviae mange with no repetition needed.


Subject(s)
Naphthalenes , Animals , Guinea Pigs , Female , Naphthalenes/administration & dosage , Naphthalenes/therapeutic use , Mite Infestations/veterinary , Mite Infestations/drug therapy , Mite Infestations/parasitology , Acaricides/therapeutic use , Acaricides/administration & dosage , Pets , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Rodent Diseases/drug therapy , Rodent Diseases/parasitology , Isoxazoles
2.
Acta Parasitol ; 69(3): 1592-1599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39162923

ABSTRACT

BACKGROUND: Toxoplasma gondii, a globally distributed zoonotic obligate intracellular parasite, infects a wide array of mammals, including humans, sheep, and birds. As a unique sheep breed in southwestern China, Yunnan semi-fine wool sheep occupies an important position in animal husbandry in Zhaotong due to its strong adaptability, high reproductive rate, and excellent wool quality. Lambs infected with T. gondii are prone to neurological symptoms and growth retardation, while T. gondii infection in ewes can cause abortions, stillbirths, and deformities, thus affecting sheep reproduction and sheep product quality. Meanwhile, mutton and dairy products contaminated with T. gondii can become potential sources of human infection, potentially threatening public health and safety. METHOD: To understand the T. gondii infection in semi-fine wool sheep in Zhaotong, Yunnan Province, 586 blood samples were collected and subjected to indirect hemagglutination assay (IHA) for T. gondii antibodies, and the infection-related factors were analyzed through cross-sectional analysis. In the meantime, nested PCR was conducted on a total of 217 samples collected from 31 rodents caught in and around the sheep breeding ground to test the T. gondii B1 gene in rodent tissues. RESULTS: A total of 94 sera tested positive for T. gondii antibodies, with a total positive rate of 16.04% (94/586) (95% CI: 14.77-20.89). Cross-sectional statistical analysis on factors related to semi-fine wool sheep infection rate, including sampling season, sex, age, and weight, suggested that age (< 6 months: 23.81%; 6-12 months: 11.74%; > 12 months: 15.83%) was a significant factor explaining the infection rate differences (P = 0.003 < 0.05, χ2 = 11.62, df = 2). Thus, age was considered a key risk factor for T. gondii infection in this study (odds ratio, OR = 2.35, 95% CI: 1.42-3.87). Nested PCR analysis on 217 (heart, liver, spleen, lung, kidney, brain, and muscle) tissues from the 31 rodents indicated that 11 tested positive. The total infection rate of rodents in and around the breeding ground was 35.48% (11/31), and 14 samples tested positive, with a positive infection rate of 6.45% (14/217). CONCLUSION: The T. gondii infection rates of semi-fine wool sheep and rodents from their breeding environment in Zhaotong, Yunnan Province, were high, necessitating enhanced prevention, control, and treatment measures to ensure the healthy breeding of semi-fine wool sheep and veterinary public health and safety.


Subject(s)
Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Toxoplasma/genetics , Toxoplasma/isolation & purification , China/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Sheep , Female , Male , Antibodies, Protozoan/blood , Rodentia/parasitology , Cross-Sectional Studies , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
3.
Arch Razi Inst ; 79(1): 120-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192953

ABSTRACT

Rodents act as reservoirs, intermediate hosts, or definitive hosts for various zoonotic helminths. Parasitic diseases are among the critical factors affecting the survival and composition of wild rodent populations. Wild rodents share their habitat with domestic free-grazing animals, mainly sheep, stray dogs, and cats, which allows the transmission of helminth infections, such as Toxocara and Trichinella, to these animals. This study investigated the helminth parasite fauna of wild rodents in East Azerbaijan province, north-western Iran, and discussed the possibility of parasite transmission among wild rodents. A total of 204 rodents of 17 different species (spp.) were collected in north-western Iran. Information about the genus, developmental stage, and rodent spp. was recorded for each animal. The gastrointestinal tract, liver, and diaphragm were examined for the presence of helminths. The recovered specimens were identified based on references. The prevalence rate of helminth infection among the captured rodents was 67.16%. Meriones persicus (M. persicus) showed the highest infection and diversity rates. This spp. harbored the zoonotic helminth Capillaria hepatica and some spp. belonging to the genera Toxocara, Syphacia, and Hymenolepis. M. persicus specimens from mountainous areas showed the highest infection rate. This study aimed at evaluating the potential role of wild rodent spp. as reservoirs of helminth infection in East Azerbaijan province, Iran. M. persicus was the most common spp. in our study and represented a higher proportion of the infected rodents in terms of helminth diversity and frequency. Harboring zoonotic helminths, M. persicus represents a health risk. Further studies are recommended to evaluate the prevalence of these parasites in the human community and inform people concerned about the risk of disease transmission to humans through rodents.


Subject(s)
Helminthiasis, Animal , Rodent Diseases , Rodentia , Animals , Iran/epidemiology , Helminthiasis, Animal/epidemiology , Helminthiasis, Animal/parasitology , Prevalence , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Animals, Wild/parasitology , Helminths/isolation & purification , Helminths/classification
4.
J Parasitol ; 110(4): 375-385, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39155055

ABSTRACT

With the intensity and frequency of wildfires increasing rapidly, the need to study the ecological effects of these wildfires is also growing. An understudied aspect of fire ecology is the effect fires have on parasite-host interactions, including ectoparasites that might be pathogen vectors. Although some studies have examined the impacts of fire on ticks, studies on other ectoparasites, including pathogen vectors, are rare. To help address this knowledge gap, we examined the abiotic and biotic factors that predict the likelihood and extent of parasitism of deer mice (Peromyscus maniculatus) by fleas within a landscape of unburned and recovering burned (>9 yr postfire) mixed conifer forests. We sampled 227 individual deer mice across 27 sites within the Jemez Mountains of northern New Mexico in 2022 and quantified measures of parasitism by fleas (primarily Aetheca wagneri). These sites were distributed in both unburned areas (n = 15) and recovering burned areas (n = 12), with the latter derived from 2 large fires, the Las Conchas fire (2011) and the Thompson Ridge fire (2013). Using these data, we tested for differences in prevalence, mean abundance, and mean intensity of fleas on deer mice, focusing on the predictive importance of host sex and fire history. We also created generalized linear mixed-effects models to investigate the best host and environmental predictors of parasitism by fleas. Approximately a decade postfire, we found minimal evidence to suggest that fire history influenced either the presence or intensity of fleas on deer mice. Rather, at the current forest-regeneration stage, the extent of parasitism by fleas was best predicted by measures of host sex, body condition, and the trapline's ability to accumulate water, as measured through topography. As host body condition increased, the probability of males being parasitized increased, whereas the opposite pattern was seen for females. Male mice also had significantly greater flea loads. Among potential abiotic predictors, the topographic wetness index or compound topographic index (a proxy for soil moisture) was positively related to flea intensity, suggesting larger flea populations in burrows with higher relative humidity. In summary, although fire may potentially have short-term impacts on the likelihood and extent of host parasitism by fleas, in this recovering study system, host characteristics and topographic wetness index are the primary predictors of parasitism by fleas.


Subject(s)
Flea Infestations , Forests , Peromyscus , Rodent Diseases , Siphonaptera , Animals , Peromyscus/parasitology , Female , Male , Flea Infestations/veterinary , Flea Infestations/parasitology , Flea Infestations/epidemiology , Siphonaptera/physiology , Siphonaptera/classification , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , New Mexico/epidemiology , Wildfires , Host-Parasite Interactions , Fires , Tracheophyta/parasitology
5.
Comp Med ; 74(3): 167-172, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39107940

ABSTRACT

Murine fur mites are commonly excluded in modern research animal programs, yet infestations continue to persist due to challenges in detection and control. Because all diagnostic methods and treatment options have limitations, programs must make many operational decisions when trying to eradicate these ectoparasites. The primary aim of this study was to assess various durations of treatment time with an ivermectin-compounded diet in eliminating Radfordia affinis in mice as determined by PCR testing and pelt examination. A shorter treatment duration would be highly advantageous as compared with the current regimen of 8 wk as it would minimize cost and time for animal management programs, impediments to research, and ivermectin drug effects on infested animals. Five experimental groups of R. affinis -positive mice received dietary ivermectin for 0, 2, 4, 6, or 8 wk. A fur mite-negative, naïve mouse was added to each group every 8 wk to perpetuate the infestation and amplify any remaining populations of fur mites. At 16 wk after the respective treatment end, PCR testing was performed for all treated groups in conjunction with the positive control group (no treatment). Visual examination of pelts for mites and eggs via direct microscopy was also performed at each time point. All treated mice were free of R. affinis at 16 wk after the end of treatment as confirmed by both PCR testing and pelt examination. These findings indicate that a dietary ivermectin treatment duration of as little as 2 wk is effective in eliminating R. affinis, making successful eradication initiatives more achievable.


Subject(s)
Ivermectin , Mite Infestations , Animals , Ivermectin/administration & dosage , Mice , Mite Infestations/drug therapy , Mite Infestations/veterinary , Mite Infestations/prevention & control , Mites/drug effects , Antiparasitic Agents/administration & dosage , Rodent Diseases/drug therapy , Rodent Diseases/parasitology , Rodent Diseases/prevention & control , Female , Time Factors , Diet/veterinary
6.
Braz J Microbiol ; 55(3): 2739-2751, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39012426

ABSTRACT

Orthohantaviruses, cause hemorrhagic fever with renal syndrome, nephropathia epidemica, and hantavirus pulmonary syndrome, are major public health problems all over the world. Wild rodent surveillance for orthohantaviruses is of great importance for the preparedness against these human infections and the prediction of possible outbreak regions. Thus, we aimed to screen orthohantaviruses in wild rodents in Southern Anatolia, where the area has some of the glacial period refugia in the Mediterranean Basin, and interpret their current epidemiology with climatic biovariables in comparison with previously positive regions.We trapped muroid rodents between 2015 and 2017, and screened for orthohantaviruses. Then, we evaluated the relationship between orthohantavirus infections and bioclimatic variables. In spite of the long-term and seasonal sampling, we found no evidence for Orthohantavirus infections. The probable absence of orthohantaviruses in the sampling area was further evaluated from the climatic perspective, and results led us suggest that Orthohantavirus epidemiology might be relatively dependent on precipitation levels in driest and warmest quarters, and temperature fluctuations.These initial data might provide necessary perspective on wild rodent surveillance for orthohantaviruses in other regions, and help to collect lacking data for a such habitat suitability study in a bigger scale in the future.


Subject(s)
Climate , Hantavirus Infections , Orthohantavirus , Animals , Orthohantavirus/isolation & purification , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Hantavirus Infections/veterinary , Animals, Wild/virology , Rodentia/virology , One Health , Rodent Diseases/epidemiology , Rodent Diseases/virology , Turkey/epidemiology , Seasons , Humans
7.
Parasite ; 31: 37, 2024.
Article in English | MEDLINE | ID: mdl-38963405

ABSTRACT

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Subject(s)
Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Sciuridae , Animals , Sciuridae/microbiology , Sciuridae/parasitology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Feces/microbiology , Feces/parasitology , Prevalence , Zoonoses , Polymerase Chain Reaction/veterinary , DNA, Fungal/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , DNA, Ribosomal Spacer/genetics , Animals, Wild/microbiology
8.
Parasitol Res ; 123(7): 266, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985357

ABSTRACT

Cryptosporidium infection is a common occurrence in rodents worldwide. In this study, 435 wild brown rats were captured from an animal feedlot in Xinjiang, China, with a fecal sample obtained directly from the rectal contents of each rat. The DNA extracted from these fecal samples was analyzed for Cryptosporidium spp. using PCR targeting the SSU rRNA gene. The prevalence of Cryptosporidium infection in brown rats was found to be 5.5% (24 out of 435). Interestingly, the infection rates varied among different animal enclosures, with rates of 0% in the chicken coop (0/51), cowshed (0/3), and varying rates in other areas including the sheepfold (6.1%, 6/98), the pigsty (7.6%, 10/132), the dovecote (7.0%, 5/71), and outdoor environments (3.8%, 3/80). The study identified three species and one genotype of Cryptosporidium, namely C. occultus (n = 10), C. parvum (n = 4), C. ditrichi (n = 1), and Cryptosporidium rat genotype IV (n = 9). Additionally, two of the C. parvum isolates were successfully subtyped as IIdA19G1 (n = 2) at the gp60 gene. These results offer valuable insights into the prevalence and genetic diversity of Cryptosporidium in brown rats within the region.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Feces , Animals , Cryptosporidium/genetics , Cryptosporidium/classification , Cryptosporidium/isolation & purification , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , China/epidemiology , Rats/parasitology , Feces/parasitology , Prevalence , Genotype , DNA, Protozoan/genetics , Phylogeny , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Polymerase Chain Reaction
9.
Parasitol Res ; 123(7): 271, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001937

ABSTRACT

Parasites are ubiquitous in wildlife populations and have a profound impact on population dynamics. Interest in parasites of wildlife has increased significantly in recent years, particularly in those with relevant conservation status. Patagonia is one of the wildest and remote areas of the world. The Wolffsohn's viscacha lives in a small mountainous area of Patagonia. Until now, little is known about the biology and ecology of this species. The aim of this research was to study the gastrointestinal parasite diversity in this rodent from a coprological survey. A total of 125 fecal samples from 25 colonies were examined. Each sample was rehydrated, homogenized, and analyzed using three parasitological techniques: spontaneous sedimentation, Mini-FLOTAC, and centrifugation-flotation in sucrose-saturated solution, followed by examination under optical microscopy. The samples, eggs, and oocysts of parasites were described, measured, and photographed. All colonies were positive for at least one parasite species. A total of 10 parasitic species were identified: Viscachataenia sp., possibly V. quadrata, Monoecocestus sp., an unidentified anoplocephalid, Heteroxynema sp., possibly H. (Cavioxyura) viscaciae, Helminthoxys sp., possibly H. effilatus, an unidentified strongylid-type egg, Trichuris sp., two morphologies of unidentified coccidians and Eimeria sp. This is the first exhaustive study of gastrointestinal parasites in L. wolffsohni and a large number of eggs and oocysts of parasites were found. Our results highlight the use of noninvasive techniques for the study of parasites of wildlife hosts; as in the case of this rodent with a remote habitat, which makes sampling difficult. The results of our study provide baseline information on gastrointestinal parasite infections in this species.


Subject(s)
Feces , Animals , Feces/parasitology , Argentina , Rodentia/parasitology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Parasites/isolation & purification , Parasites/classification , Microscopy , Gastrointestinal Tract/parasitology
10.
Virology ; 597: 110168, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991257

ABSTRACT

Viruses in the genus Orthohantavirus within the family Hantaviridae cause human hantavirus infections and represent a threat to public health. Hokkaido virus (HOKV), a genotype of Orthohantavirus puumalaense (Puumala virus; PUUV), was first identified in Tobetsu, Hokkaido, Japan. Although it is genetically related to the prototype of PUUV, the evolutionary pathway of HOKV is unclear. We conducted a field survey in a forest in Tobetsu in 2022 and captured 44 rodents. Complete coding genome sequences of HOKVs were obtained from five viral-RNA-positive rodents (four Myodes rufocanus bedfordiae and one Apodemus speciosus). Phylogenetic analysis revealed a close relationship between the phylogenies and geographical origins of M. rufocanus-related orthohantaviruses. Comparison of the phylogenetic trees of the S segments of orthohantaviruses and the cytochrome b genes of Myodes species suggested that Myodes-related orthohantaviruses evolved in Myodes rodent species as a result of genetic isolation and host switching.


Subject(s)
Evolution, Molecular , Genome, Viral , Genotype , Phylogeny , Puumala virus , Animals , Japan , Puumala virus/genetics , Puumala virus/classification , Arvicolinae/virology , RNA, Viral/genetics , Rodent Diseases/virology , Hantavirus Infections/virology , Hantavirus Infections/veterinary , Orthohantavirus/genetics , Orthohantavirus/classification
11.
Ann Parasitol ; 70(1): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38985754

ABSTRACT

Shrews and small rodents inhabit the drainage channel banks in reclai med areas and have their own helminth complex. The aim of the study is to conduct the 3rd research period during 2015-2019 the helminth fauna of these animals living on the drainage channel banks of model reclamation systems in Brest Polesie (south-western part of Belarus), to establish the species composition of helminths and the animal infection by these, and to compare the data obtained with previous research periods. 4,000 trap-days were worked out. 151 specimens of shrews of 4 species and 510 small rodents of 8 species were caught. Animals were examined by the method of complete helminthological dissections. Their numbers were 3.78 and 12.75 individuals per 100 trap-days, and helminth infection was 94.7% and 65.9%, respectively. 66 helminth species were found in animals. The dominant helminth species in infection have been identified. The trematode Prosolecithus danubica Tkach et Bray, 1995 (definitive host: common shrew), the acanthocephalans Centhrorhynchus aluconis (Müller, 1780) (larval host: lesser shrew) and Moniliformis moniliformis (Bremser, 1811) (definitive host: striped field mouse) are new species of helminths for Belarus. New hosts in Belarus have been found for 6 helminth species. Shrews and small rodents are involved in the life cycles of bird, non-ruminant artiodactyl and carnivorous mammal helminths. Nine helminth species have significance for medicine and 7 species for veterinary science. The results are compared with data from the 1st (1996-1999) and 2nd (2005-2010) research periods.


Subject(s)
Helminthiasis, Animal , Helminths , Rodentia , Shrews , Animals , Shrews/parasitology , Rodentia/parasitology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Helminths/classification , Helminths/isolation & purification , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Republic of Belarus/epidemiology
12.
PLoS Negl Trop Dis ; 18(7): e0012306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976750

ABSTRACT

BACKGROUND: Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are involved in the transmission and maintenance of infectious diseases. Furthermore, despite their importance, diseases transmitted by rodents have been neglected. To date, there have been limited epidemiological studies on rodents, and information regarding their involvement in infectious diseases in the Republic of Korea (ROK) is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight provinces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infections with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in all regions, showing a widespread occurrence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii. CONCLUSIONS/SIGNIFICANCE: To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in rodents in the ROK. This study also provides the first description of various rodent-borne pathogens through an extensive epidemiological survey in the ROK. These results suggest that rodents harbor various pathogens that pose a potential threat to public health in the ROK. Our findings provide useful information on the occurrence and distribution of zoonotic pathogens disseminated among rodents and emphasize the urgent need for rapid diagnosis, prevention, and control strategies for these zoonotic diseases.


Subject(s)
Anaplasma phagocytophilum , Bartonella , Coxiella burnetii , Zoonoses , Animals , Republic of Korea/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology , Rats , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Bartonella/isolation & purification , Bartonella/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Rodentia/microbiology , Murinae/microbiology , Animals, Wild/microbiology , Animals, Wild/virology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/virology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Disease Reservoirs/microbiology , Leptospira interrogans/isolation & purification , Leptospira interrogans/genetics
13.
Front Cell Infect Microbiol ; 14: 1409685, 2024.
Article in English | MEDLINE | ID: mdl-38957795

ABSTRACT

Introduction: Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby enabling parasite transmission to domestic animals and humans. This study aimed to investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian Autonomous Region and Liaoning Province of China. Moreover, to evaluate the potential for zoonotic transmission at the genotype level, a genetic analysis of the isolates was performed. Methods: A total of 486 wild rodents were captured from two provinces in China. Polymerase chain reaction (PCR) was performed to amplify the vertebrate cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their species. The genotype of E. bieneusi was determined via PCR amplification of the internal transcribed spacer (ITS) region of rDNA. The examination of genetic characteristics and zoonotic potential requires the application of similarity and phylogenetic analysis. Results: The infection rates of E. bieneusi in the four identified rodent species were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n = 96), 11.3% for Mus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195). Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11 identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30 samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5 samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two novel genotypes were also discovered, NMR-I and NMR-II, each comprising one sample. The genotypes were classified into group 1 and group 13 via phylogenetic analysis. Discussion: Based on the initial report, E. bieneusi is highly prevalent and genetically diverse in wild rodents residing in the respective province and region. This indicates that these animals are crucial for the dissemination of E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to local inhabitants. Therefore, it is necessary to increase awareness regarding the dangers presented by these rodents and reduce their population to prevent environmental contamination.


Subject(s)
Animals, Wild , Enterocytozoon , Feces , Genotype , Host Specificity , Microsporidiosis , Phylogeny , Rodentia , Zoonoses , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Zoonoses/microbiology , Zoonoses/transmission , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/microbiology , Rodentia/microbiology , Feces/microbiology , Animals, Wild/microbiology , Prevalence , Cytochromes b/genetics , Disease Reservoirs/microbiology , Mice , DNA, Ribosomal Spacer/genetics , Humans , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Polymerase Chain Reaction , DNA, Fungal/genetics , Rats
14.
PLoS One ; 19(7): e0306181, 2024.
Article in English | MEDLINE | ID: mdl-38959227

ABSTRACT

Babesia is a tick-transmitted parasite that infects wild and domestic animals, causes babesiosis in humans, and is an increasing public health concern. Here, we investigated the prevalence and molecular characteristics of Babesia infections in the rodents in Southeastern Shanxi, China. Small rodents were captured, and the liver and spleen tissues were used for Babesia detection using traditional PCR and sequencing of the partial 18S rRNA gene. The analysis revealed that 27 of 252 small rodents were positive for Babesia, with an infection rate of 10.71%. The infection rates in different sexes and rodent tissues were not statistically different, but those in different rodent species, habitats, and sampling sites were statistically different. The highest risk of Babesia infection was observed in Niviventer confucianus captured from the forests in Huguan County. Forty-three sequences from 27 small rodents positive for Babesia infection were identified as Babesia microti, including 42 sequences from 26 N. confucianus, and one sequence from Apodemus agrarius. Phylogenetic analysis showed that all sequences were clustered together and had the closest genetic relationship with Babesia microti strains isolated from Rattus losea and N. confucianus in China, and belonged to the Kobe-type, which is pathogenic to humans. Compared to other Kobe-type strains based on the nearly complete 18S rRNA gene, the sequences obtained in this study showed the difference by 1-3 bp. Overall, a high prevalence of Babesia microti infection was observed in small rodents in Southeastern Shanxi, China, which could benefit us to take the implementation of relevant prevention and control measures in this area.


Subject(s)
Babesia microti , Babesiosis , Phylogeny , RNA, Ribosomal, 18S , Rodentia , Animals , Babesia microti/genetics , Babesia microti/isolation & purification , China/epidemiology , Babesiosis/epidemiology , Babesiosis/parasitology , Prevalence , Rodentia/parasitology , RNA, Ribosomal, 18S/genetics , Female , Male , Rodent Diseases/epidemiology , Rodent Diseases/parasitology
15.
Parasite ; 31: 34, 2024.
Article in English | MEDLINE | ID: mdl-38949636

ABSTRACT

Wild rodents serve as reservoirs for Cryptosporidium and are overpopulated globally. However, genetic data regarding Cryptosporidium in these animals from China are limited. Here, we have determined the prevalence and genetic characteristics of Cryptosporidium among 370 wild rodents captured from three distinct locations in the southern region of Zhejiang Province, China. Fresh feces were collected from the rectum of each rodent, and DNA was extracted from them. The rodent species was identified by PCR amplifying the vertebrate cytochrome b gene. Cryptosporidium was detected by PCR amplification and amplicon sequencing the small subunit of ribosomal RNA gene. Positive samples of C. viatorum and C. parvum were further subtyped by analyzing the 60-kDa glycoprotein gene. A positive Cryptosporidium result was found in 7% (26/370) of samples, involving five rodent species: Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155), and R. tanezumi (86). Their respective Cryptosporidium positive rates were 8.3%, 5.3%, 11.1%, 7.1%, and 7.0%. Sequence analysis confirmed the presence of three Cryptosporidium species: C. parvum (4), C. viatorum (1), and C. muris (1), and two genotypes: Cryptosporidium rat genotype IV (16) and C. mortiferum-like (4). Additionally, two subtypes of C. parvum (IIdA15G1 and IIpA19) and one subtype of C. viatorum (XVdA3) were detected. These results demonstrate that various wild rodent species in Zhejiang were concurrently infected with rodent-adapted and zoonotic species/genotypes of Cryptosporidium, indicating that these rodents can play a role in maintaining and dispersing this parasite into the environment and other hosts, including humans.


Title: Transmission interspécifique de Cryptosporidium chez les rongeurs sauvages de la région sud de la province chinoise du Zhejiang et son impact possible sur la santé publique. Abstract: Les rongeurs sauvages servent de réservoirs à Cryptosporidium et ont des grandes populations à l'échelle mondiale. Cependant, les données génétiques concernant Cryptosporidium chez ces animaux en Chine sont limitées. Ici, nous avons déterminé la prévalence et les caractéristiques génétiques de Cryptosporidium parmi 370 rongeurs sauvages capturés dans trois endroits distincts de la région sud de la province du Zhejiang, en Chine. Des excréments frais ont été collectés dans le rectum de chaque rongeur et l'ADN en a été extrait. L'espèce de rongeur a été identifiée par amplification par PCR du gène du cytochrome b des vertébrés. Cryptosporidium a été détecté par amplification PCR et séquençage d'amplicons de la petite sous-unité du gène de l'ARN ribosomal. Les échantillons positifs de C. viatorum et C. parvum ont ensuite été sous-typés en analysant le gène de la glycoprotéine de 60 kDa. Un résultat positif pour Cryptosporidium a été trouvé dans 7 % (26/370) des échantillons, impliquant cinq espèces de rongeurs : Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155) et R. tanezumi (86). Leurs taux respectifs de positivité pour Cryptosporidium étaient de 8,3 %, 5,3 %, 11,1 %, 7,1 % et 7,0 %. L'analyse des séquences a confirmé la présence de trois espèces de Cryptosporidium : C. parvum (4), C. viatorum (1) et C. muris (1), et de deux génotypes : Cryptosporidium génotype IV de rat (16) et C. mortiferum-like (4). De plus, deux sous-types de C. parvum (IIdA15G1 et IIpA19) et un sous-type de C. viatorum (XVdA3) ont été détectés. Ces résultats démontrent que diverses espèces de rongeurs sauvages du Zhejiang sont simultanément infectées par des espèces/génotypes de Cryptosporidium zoonotiques et adaptés aux rongeurs, ce qui indique que ces rongeurs peuvent jouer un rôle dans le maintien et la dispersion de ce parasite dans l'environnement et d'autres hôtes, y compris les humains.


Subject(s)
Animals, Wild , Cryptosporidiosis , Cryptosporidium , Feces , Rodent Diseases , Rodentia , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , China/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Rodent Diseases/transmission , Animals, Wild/parasitology , Rats/parasitology , Rodentia/parasitology , Prevalence , Public Health , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Phylogeny , Humans , DNA, Protozoan/isolation & purification , Murinae/parasitology , Polymerase Chain Reaction , Zoonoses/parasitology , Zoonoses/transmission , Zoonoses/epidemiology , Genotype
16.
Vet Parasitol Reg Stud Reports ; 53: 101066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025540

ABSTRACT

Cuniculus paca, commonly known as the paca, is a rodent of the Cuniculidae family that is widely distributed throughout the Americas, including all Brazilian territories, and is abundant in the Amazon region. It is one of the most hunted species and faces significant predation in the extreme western Amazon region of Brazil because it constitutes a staple in the diet of local communities, for subsistence and commercial purposes. Understanding the helminthic fauna of these animals is of paramount importance, given that some nematodes have zoonotic potential and may pose risks to consumer health. This study aimed to contribute to the records of the nemtodes of this highly consumed species in the Amazon region, highlighting the occurrence of gastrointestinal parasites in free-living pacas intended for human subsistence consumption. The study was conducted in the Paranã da Floresta community, located in the municipality of Guajará, Amazonas from 2022 to 2023. The community members hunted this rodent for consumption and voluntarily provided the viscera for analysis. Nematodes were extracted from each organ. The organs were opened, and the contents were processed using a sieve (0.15 mm) and subsequently evaluated separately. In total, 10,157 nematodes were found in the 14 pacas. Based on morphological analyses, the nematodes were identified as Heligmostrongylus sedecimradiatus (n = 10,068), Trichuris sp. (n = 85), and Physaloptera sp. (n = 4). This study provides insights into the nematodes diversity of free-living pacas in the extreme Western Amazon region, emphasizing the importance of sanitary surveillance and public awareness of the risks associated with bushmeat consumption.


Subject(s)
Nematoda , Nematode Infections , Animals , Brazil/epidemiology , Nematoda/isolation & purification , Nematoda/classification , Nematode Infections/veterinary , Nematode Infections/parasitology , Nematode Infections/epidemiology , Cuniculidae/parasitology , Male , Female , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Humans
17.
J Parasitol ; 110(4): 300-310, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39034041

ABSTRACT

Enteric parasites can have wide-ranging effects throughout an ecosystem, often driving coevolutionary and ecological processes. Parasites have long been overlooked in conservation efforts because of the negative impact inflicted on their hosts; however, parasites make up a significant component of Earth's biodiversity and host conservation efforts need to be parasite inclusive. The Vancouver Island marmot (VIM), Marmota vancouverensis, is an endangered alpine rodent endemic to Vancouver Island, British Columbia, Canada. Captive-bred VIMs are released to augment the wild population, but their susceptibility to parasites is unknown. The objectives of this study were to describe the diversity, prevalence, severity, and temporal variation of VIM enteric parasites. Noninvasive fecal samples were collected from wild and captive marmots and analyzed using a modified McMaster fecal egg floatation technique to indicate parasite prevalence and relative mean abundance. We identified oocysts and ova from 3 parasite taxa including a protozoan coccidium not previously described in the VIM (prevalence 68%), an ascarid nematode Baylisascaris laevis (prevalence 82%), and an anoplocephalid cestode Diandrya vancouverensis (prevalence 8%). Depending on the species, comparisons revealed variation in parasite infection by sex, by colony, and between wild and captive VIMs, but not among age classes or by female reproductive status. Finally, captive VIMs displayed significant monthly variation in parasite prevalence and mean egg abundance, suggesting a seasonal influence on parasite egg shedding. This information is critically important for future research investigating the influences of these trends on the health, ecology, and conservation of VIMs and their parasites.


Subject(s)
Endangered Species , Feces , Intestinal Diseases, Parasitic , Marmota , Population Dynamics , Animals , Marmota/parasitology , British Columbia/epidemiology , Feces/parasitology , Female , Male , Prevalence , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Seasons , Animals, Wild/parasitology
18.
Vector Borne Zoonotic Dis ; 24(8): 478-488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853708

ABSTRACT

Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.


Subject(s)
Tick-Borne Diseases , Zoonoses , Animals , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/veterinary , Netherlands/epidemiology , Ecosystem , Rodentia , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Prevalence , Arvicolinae , Shrews/parasitology , Ticks/microbiology , Mice , Cities
19.
Zoonoses Public Health ; 71(6): 736-743, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38849303

ABSTRACT

BACKGROUND: The high levels of recent transmission of leprosy worldwide demonstrate the necessity of epidemiologic surveillance to understand and control its dissemination. Brazil remains the second in number of cases around the world, indicating active transmission of Mycobacterium leprae (M. leprae) in the population. At this moment, there is a consensus that the bacillus is transmitted by inter-human contact, however, different serologic, molecular, and histopathological approaches indicate the existence of non-human transmission sources. METHODS AND RESULTS: The qPCR assay was used to amplify the molecular targets 16S RNAr and RLEP, in samples of liver, spleen, and ear of wild animals belonging to Didelphimorphia and Rodentia orders, in highly endemic areas of Mato Grosso, Brazil. The RLEP repetitive sequence was positive in 202 (89.0%) samples, with 96 (42.3%) of these also being positive for the 16S gene. Regarding the collection sites, it was observed that the animals were found in areas profoundly deforested, close to urban areas. CONCLUSIONS: Our results suggest that wild animals can play an important role in the maintenance of M. leprae in endemic regions with major anthropic action in Brazil. Therefore, integrating human, animal, and environmental health care with the One Health initiative is highly efficient for the development of effective strategies to contain and control leprosy in Brazil.


Subject(s)
Leprosy , Mycobacterium leprae , Rodentia , Mycobacterium leprae/genetics , Mycobacterium leprae/isolation & purification , Brazil/epidemiology , Animals , Rodentia/microbiology , Leprosy/epidemiology , Leprosy/veterinary , Leprosy/microbiology , Leprosy/transmission , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Humans , Animals, Wild/microbiology , RNA, Ribosomal, 16S/genetics
20.
Zoonoses Public Health ; 71(6): 748-754, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38937928

ABSTRACT

BACKGROUND: Angiostrongylus cantonensis, commonly known as the rat lungworm, is a metastrongyloid nematode found primarily not only in tropical and subtropical regions but also in temperate areas and considered the leading cause of eosinophilic meningitis in humans. Synanthropic rodents such as Rattus norvegicus and Rattus rattus are the most frequent definitive hosts of this parasite. METHODS AND RESULTS: The presence of this parasite was detected in the pulmonary arteries of three specimens of R. norvegicus in the city of Buenos Aires representing the species' southernmost known record in natural hosts. Species confirmation was achieved through partial sequences of 18S and COI genes. By comparing the COI gene sequences with those available in GenBank through the construction of a haplotype network, we obtained that the analysed specimen presents high similarity with those reported in Japan and Southeast Asia. CONCLUSIONS: All infected rats were captured in an area surrounding a port with significant import and export activity, suggesting that A. cantonensis may have been introduced through commercial ships. Specifically, the parasite was detected in a neighbourhood with vulnerable socio-economic conditions and in a nature reserve, which exhibit biotic and abiotic characteristics conducive to sustaining high-density rat populations, scattered waste, areas of spontaneous vegetation, debris accumulation and flooded areas or lagoons offering suitable habitats for intermediate hosts such as snails. Thus, the close proximity of the port to these sites creates a favourable ecological context for the establishment of A. cantonensis. This study shows the need to conduct research to detect A. cantonensis in non-endemic areas but with the characteristics that promote its arrival and development of its life cycle in order to implement control measures to prevent expansion of this parasite and its transmission to humans and other animals.


Subject(s)
Angiostrongylus cantonensis , Strongylida Infections , Animals , Angiostrongylus cantonensis/genetics , Angiostrongylus cantonensis/isolation & purification , Rats , Strongylida Infections/veterinary , Strongylida Infections/epidemiology , Strongylida Infections/parasitology , Argentina/epidemiology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL