Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.847
Filter
1.
Ecohealth ; 21(1): 1-8, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38748281

ABSTRACT

From July 2020 to June 2021, 248 wild house mice (Mus musculus), deer mice (Peromyscus maniculatus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) from Texas and Washington, USA, and British Columbia, Canada, were tested for SARS-CoV-2 exposure and infection. Two brown rats and 11 house mice were positive for neutralizing antibodies using a surrogate virus neutralization test, but negative or indeterminate with the Multiplexed Fluorometric ImmunoAssay COVID-Plex, which targets full-length spike and nuclear proteins. Oro-nasopharyngeal swabs and fecal samples tested negative by RT-qPCR, with an indeterminate fecal sample in one house mouse. Continued surveillance of SARS-CoV-2 in wild rodents is warranted.


Subject(s)
Animals, Wild , COVID-19 , Cities , Animals , Mice , Rats/virology , COVID-19/epidemiology , Animals, Wild/virology , SARS-CoV-2 , Peromyscus/virology , Feces/virology , Rodent Diseases/virology , Rodent Diseases/epidemiology , Antibodies, Neutralizing/blood
2.
J Anim Ecol ; 93(6): 650-653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706185

ABSTRACT

Research Highlight: Mistrick, J., Veitch, J. S. M., Kitchen, S. M., Clague, S., Newman, B. C., Hall, R. J., Budischak, S. A., Forbes, K. M., & Craft, M. E. (2024). Effects of food supplementation and helminth removal on space use and spatial overlap in wild rodent populations. Journal of Animal Ecology. http://doi.org/10.1111/1365-2656.14067. The spread of pathogens has been of long-standing interest, even before dramatic outbreaks of avian influenza and the coronavirus pandemic spiked broad public interest. However, the dynamics of pathogen spread in wild populations are complex, with multiple effects shaping where animals go (their space use), population density and, more fundamentally, the resultant patterns of contacts (direct or indirect) among individuals. Thus, experimental studies exploring the dynamics of contact under different sets of conditions are needed. In the current field study, Mistrick et al. (2024) used a multifactorial experimental design, manipulating food availability and individual pathogen infection state in wild bank voles (Clethrionomys glareolus). They found that while food availability, individual traits and seasonality can affect how far individual voles moved, the degree of overlap between individual voles remained largely the same despite a high variation in population density-which itself was affected by food availability. These results highlight how biotic and abiotic factors can shape patterns of space use and balance the level of spatial overlap through multiple pathways.


Subject(s)
Arvicolinae , Animals , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Rodent Diseases/virology , Prevalence , Animals, Wild , Male , Female
3.
PLoS Negl Trop Dis ; 18(5): e0012142, 2024 May.
Article in English | MEDLINE | ID: mdl-38739651

ABSTRACT

BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Parks, Recreational , Phylogeny , Seoul virus , Animals , Seoul virus/genetics , Seoul virus/isolation & purification , Seoul virus/classification , Rats/virology , France/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/veterinary , Hemorrhagic Fever with Renal Syndrome/transmission , Animals, Wild/virology , Humans , Cities/epidemiology , Rodent Diseases/virology , Rodent Diseases/epidemiology
4.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
5.
J Vector Borne Dis ; 61(1): 43-50, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648405

ABSTRACT

BACKGROUND OBJECTIVES: Leptospirosis is an important zoonotic infection that has caused significant mortality and morbidity worldwide. This disease is endemic in Malaysia and as a developing tropical country, leptospirosis is concerning as it threatens Malaysian public health and the country's economic sectors. However, there is limited information on leptospirosis in Malaysia, especially regarding leptospiral seroepidemiology among carriers in Malaysia. Therefore, more epidemiological information on the source of the disease and reservoir are needed for better disease control and source intervention. The objectives of this study are to gather information on Leptospira infection and the carrier status of rats captured from selected wet markets of Kuala Lumpur metropolitan city in Malaysia. METHODS: Live rat trappings were performed in four major wet markets in Kuala Lumpur, namely, Pudu, Chow Kit, Datuk Keramat, and Petaling Street. Animal samplings were performed for 12 months in 2017, where blood and kidney samples were collected and tested for anti-leptospiral antibodies via Microscopic Agglutination Test (MAT) and pathogenic Leptospira screening via Polymerase Chain Reaction (PCR) amplification offlaB gene. RESULTS: MAT showed that 34.7% (n = 50/144) of the captured rats were positive for anti-leptospiral antibody of which the most prominent serovar was Malaya followed by a local strain, IMR LEP 175. In parallel, 50 rats were also positive for pathogenic Leptospira DNA. INTERPRETATION CONCLUSION: This study showed that there are persistent Leptospira infections among rats in Kuala Lumpur wet markets and these rats are important reservoir hosts for the bacteria.


Subject(s)
Antibodies, Bacterial , Leptospira , Leptospirosis , Animals , Malaysia/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Rats , Leptospira/genetics , Leptospira/isolation & purification , Antibodies, Bacterial/blood , Carrier State/microbiology , Carrier State/epidemiology , Seroepidemiologic Studies , Male , Disease Reservoirs/microbiology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Female , Polymerase Chain Reaction , Agglutination Tests
6.
Vet Parasitol Reg Stud Reports ; 50: 101014, 2024 05.
Article in English | MEDLINE | ID: mdl-38644045

ABSTRACT

The present pilot research was focused on the detection of intestinal parasites in the ground squirrel populations in various regions of Slovakia. Only a very little information is currently available on the parasitic species composition of the European ground squirrel in Slovakia and across Europe. In the Slovak Republic, there are 70 locations where the ground squirrel populations are present. A total of 600 faecal samples of the European ground squirrels, collected from 36 locations all over Slovakia, were examined by applying the coprological method. The presence of the protozoan coccidian parasite of the Eimeria genus was confirmed in all of the analysed locations. The presence of eggs of four helminths were confirmed: Capillaria spp. (66.6% of locations); the Trichostrongylidae family (42.8% of locations); Hymenolepis spp. (11.9% of locations); and Citellina spp. (7.14% of locations). Dead individuals that were found in the analysed localities were subjected to necropsy and the tissues scraped off their small intestines were stained in order to confirm the presence of parasites. The post-mortem examination of the intestines and the sedimentation of the intestinal contents in a saline solution did not result in the confirmation of the presence of the eggs, adults or the larval stages of parasites. Spermophilus citellus is one of the strictly protected animal species in Slovakia. In recent years, numerous projects aimed at supporting and protecting ground squirrels have been implemented. The present pilot study on intestinal parasites and the subsequent cooperation with environmental activists will contribute to the support and stabilisation of the presence of these animals in our country.


Subject(s)
Endangered Species , Feces , Intestinal Diseases, Parasitic , Sciuridae , Animals , Sciuridae/parasitology , Slovakia/epidemiology , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Pilot Projects , Eimeria/isolation & purification , Eimeria/classification
7.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
8.
Exp Parasitol ; 259: 108726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428664

ABSTRACT

Cysticercus fasciolaris is a parasitic helminth that usually infects feline and canine mammal hosts. The intermediate hosts (rodents, occasionally lagomorphs, and humans) get infected by the consumption of feed or water contaminated with eggs. Rodents are vectors of disease and reservoirs of various zoonotic parasites. The current survey was aimed at determining endoparasitic helminth infections in rodents in central Morocco. Sampled rodents after specific identification were sacrificed and examined to identify parasitic helminths following ethical guidelines. Parasites were identified using morphological characteristics. A total of 197 specimens of rodents were collected and examined in this study. Ten rodent species were identified morphologically as Rattus rattus, R. norvegicus, Apodemus sylvaticus, Mus musculus, M. spretus, Mastomys erythroleucus, Meriones shawi, M. libycus, Gerbillus campestris, and Lemniscomys barbarus. The parasitological results showed that metacestode of tapeworms was found encysted in the liver, the larval stage of Taenia taeniaeformis develops large multinodular fibrosarcomas which envelope the tapeworm cysts in the liver of the R. rattus and R. norvegicus. Based on morphological data, the metacestode was identified as C. fasciolaris in 23 (23/80) R. rattus 2 (2/8) and R. norvegicus with a prevalence of 11.7 % and 1.0 %, respectively. Rodents are major vectors of human and domestic animal diseases worldwide, and therefore, important parasitic zoonotic agents (C. fasciolaris), which are transmitted by black rats (R. rattus) and brown rats (R. norvegicus), must be considered to prevent the infectivity of humans, domestic animals, and livestock such as cattle, sheep, and rabbits.


Subject(s)
Helminths , Rodent Diseases , Taenia , Mice , Rats , Animals , Cats , Dogs , Humans , Rabbits , Cattle , Sheep , Cysticercus , Morocco/epidemiology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Animals, Domestic , Gerbillinae
9.
Acta Parasitol ; 69(1): 922-928, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489010

ABSTRACT

PURPOSE: Rodents are one of the most abundant and diverse species of mammals and have recently been identified as carriers of numerous human pathogens. The current study was conducted to assess the prevalence, subtype (STs) distribution, and zoonotic potential of Blastocystis spp. in various species of rodents in Shiraz, southwestern Iran. METHODS: For this aim, a total of 120 fresh fecal samples were collected from Mus musculus (n = 40), Rattus norvegicus (n = 40), and Rattus rattus (n = 40) in various municipality districts of Shiraz (6 out of 10 districts) between February and November 2020. Upon detecting parasites using light microscopy, a DNA fragment of the Blastocystis SSU rDNA gene was amplified using conventional PCR. RESULTS: By employing direct wet mount examination, 8 out of 120 fecal samples (6.7%; 2 from house mice, 3 from black rats, and 3 from brown rats) tested positive. Similarly, 5% (2/40) of house mice, 7.5% (3/40) of black rats, and 7.5% (3/40) of brown rats tested positive using the molecular method. Phylogenetic analysis revealed that the Blastocystis infecting different rodent species in Shiraz belonged to two potentially zoonotic STs (ST1 and ST4). Accordingly, rodents should not be overlooked as potential reservoirs of zoonotic Blastocystis infections. Different sampled urban districts and their statistical association with reported prevalence rates were analyzed separately. CONCLUSION:  Overall, the issue of the frequency and ST distribution of Blastocystis in urban rodents of Iran is still open to question and for a proper understanding, wider and more comprehensive studies are needed.


Subject(s)
Blastocystis Infections , Blastocystis , Feces , Phylogeny , Rodent Diseases , Zoonoses , Animals , Iran/epidemiology , Blastocystis/genetics , Blastocystis/isolation & purification , Blastocystis/classification , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Blastocystis Infections/veterinary , Zoonoses/parasitology , Zoonoses/epidemiology , Rats/parasitology , Mice , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Prevalence , Rodentia/parasitology , Humans , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
10.
Comp Immunol Microbiol Infect Dis ; 108: 102158, 2024 May.
Article in English | MEDLINE | ID: mdl-38513385

ABSTRACT

Leptospirosis is a disease caused by Leptospira spp. responsible for considerable impacts on the public and animal health. In the past two decades, non-domesticated species of pets (unconventional pets) have become popular. However, the role of these unconventional pets on maintaining diseases still unclear. Therefore, the objective of this study was to survey the presence of Leptospira spp. DNA in unconventional pets. Samples of kidney tissues from 29 animals belonging to the Mammalia class (including Orders Carnivora, Lagomorpha and Rodentia) were analyzed for the presence of the gene lipL32. As a result, DNA of pathogenic Leptospira spp. from specie L. interrogans was detected in four (13,80%) of the analyzed samples: three from Oryctolagus cuniculus and one from Mesocricetus auratus. This study highlights the importance of epidemiological surveillance of leptospirosis, as it identified in species of unconventional pets, that may possibly act as reservoirs of Leptospira spp.


Subject(s)
Leptospira , Leptospirosis , Rodent Diseases , Animals , Rabbits , Leptospira/genetics , Rodent Diseases/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Rodentia , DNA, Bacterial/genetics
11.
J Anim Ecol ; 93(6): 663-675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494654

ABSTRACT

Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.


Subject(s)
Poxviridae Infections , Sciuridae , Animals , Sciuridae/virology , Sciuridae/immunology , Sciuridae/physiology , United Kingdom/epidemiology , Poxviridae Infections/veterinary , Poxviridae Infections/transmission , Poxviridae Infections/virology , Poxviridae Infections/immunology , Poxviridae Infections/epidemiology , Rodent Diseases/virology , Rodent Diseases/transmission , Rodent Diseases/immunology , Rodent Diseases/epidemiology , Models, Biological , Poxviridae/physiology , Poxviridae/immunology , Introduced Species
12.
Zoonoses Public Health ; 71(4): 416-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419369

ABSTRACT

AIMS: Rat-associated zoonotic pathogen transmission at the human-wildlife interface is a public health concern in urban environments where Norway rats (Rattus norvegicus) thrive on abundant anthropogenic resources and live in close contact with humans and other animal species. To identify potential factors influencing zoonotic pathogen occurrence in rats, we investigated associations between environmental and sociodemographic factors and Leptospira interrogans and Bartonella spp. infections in rats from Windsor, Ontario, Canada, while controlling for the potential confounding effects of animal characteristics (i.e., sexual maturity and body condition). METHODS AND RESULTS: Between November 2018 and June 2021, 252 rats were submitted by collaborating pest control professionals. Kidney and spleen samples were collected for L. interrogans and Bartonella spp. PCR and sequencing, respectively. Of the rats tested by PCR, 12.7% (32/252) were positive for L. interrogans and 16.3% (37/227) were positive for Bartonella species. Associations between infection status and environmental and sociodemographic variables of interest were assessed via mixed multivariable logistic regression models with a random intercept for social group and fixed effects to control for sexual maturity and body condition in each model. The odds of L. interrogans infection were significantly higher in rats from areas with high building density (odds ratio [OR]: 3.76; 95% CI: 1.31-10.79; p = 0.014), high human population density (OR: 3.31; 95% CI: 1.20-9.11; p = 0.021), high proportion of buildings built in 1960 or before (OR: 11.21; 95% CI: 2.06-60.89; p = 0.005), and a moderate number of reports of uncollected garbage compared to a low number of reports (OR: 4.88; 95% CI: 1.01-23.63; p = 0.049). A negative association was observed between median household income and Bartonella spp. infection in rats (OR: 0.26; 95% CI: 0.08-0.89; p = 0.031). CONCLUSIONS: Due to the complexity of the ecology of rat-associated zoonoses, consideration of environmental and sociodemographic factors is of critical importance to better understand the nuances of host-pathogen systems and inform how urban rat surveillance and intervention efforts should be distributed within cities.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Zoonoses , Animals , Rats , Ontario/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella/isolation & purification , Bartonella/genetics , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Humans , Leptospira interrogans/isolation & purification , Male , Sociodemographic Factors , Female , Environment
13.
Vet Parasitol Reg Stud Reports ; 48: 100982, 2024 02.
Article in English | MEDLINE | ID: mdl-38316509

ABSTRACT

Echinococcus multilocularis, a cestode with zoonotic potential, is now known to have a high prevalence in wild canid definitive hosts of southern Ontario. The distribution of E. multilocularis across this region in red foxes (Vulpes vulpes) and coyotes (Canis latrans) is widespread yet heterogenous. In contrast, confirmed diagnoses of E. multilocularis in wild free-ranging intermediate hosts within Ontario are currently limited to a single eastern chipmunk (Tamias striatus). These findings prompted ongoing surveillance efforts in intermediate host species, primarily rodents. Our report describes the results of passive surveillance through wildlife carcass submissions to the Canadian Wildlife Health Cooperative (CWHC) and targeted active sampling of small mammal species from 2018 to 2023; a second and third eastern chipmunk were found to be infected with E. multilocularis. However, these were the only occurrences from surveillance efforts which collectively totaled 510 rodents and other small mammals. Continued surveillance for E. multilocularis in intermediate hosts is of high importance in light of the recent emergence of this parasite in Ontario.


Subject(s)
Coyotes , Echinococcosis , Echinococcus multilocularis , Rodent Diseases , Animals , Ontario/epidemiology , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/diagnosis , Animals, Wild , Sciuridae , Foxes/parasitology , Rodent Diseases/epidemiology
14.
J Wildl Dis ; 60(2): 526-530, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38264856

ABSTRACT

Adiaspiromycosis is a nontransmissible infectious pulmonary disease caused by the inhalation of propagules from fungal species belonging to the family Ajellomicetaceae, especially Emergomyces crescens. Adiaspiromycosis caused by E. crescens has been recorded in a broad number of species worldwide, with small burrowing mammals being considered the main hosts for this environmental pathogen. Only a handful of studies on adiaspiromycosis in European wildlife has been published to date. We assessed the occurrence of adiaspiromycosis in wild rodents (Murinae and Arvicolinae) from the central Spanish Pyrenees (NE Spain). The lungs of 302 mice and 46 voles were screened for the presence of adiaspores through histopathologic examination. Pulmonary adiaspiromycosis was recorded in 21.6% of all individuals (75/348), corresponding to 63/299 wood mice (Apodemus sylvaticus) and 12/40 bank voles (Myodes glareolus). Adiaspore burden varied highly between animals, with a mean of 0.19 spores/mm2 and a percentage of affected lung tissue ranging from <0.01% to >8%. These results show that the infection is present in wild rodents from the central Spanish Pyrenees. Although the impact of this infection on nonendangered species is potentially mild, it might contribute to genetic diversity loss in endangered species.


Subject(s)
Lung Diseases, Fungal , Rodent Diseases , Animals , Spain/epidemiology , Lung Diseases, Fungal/veterinary , Mammals , Murinae , Arvicolinae , Rodent Diseases/epidemiology
15.
J Wildl Dis ; 60(2): 513-518, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38294758

ABSTRACT

Hemotropic mycoplasmas (hemoplasmas) are opportunistic bacteria that attach to the erythrocyte surface, causing infectious anemia in several mammalian species, including rodents. Studies surveying native Azara's agoutis (Dasyprocta azarae) in Brazil are lacking. Accordingly, the present study aimed to assess hemoplasmas infection in free-ranging agoutis from an urban environmental conservation area in Curitiba, southern Brazil. Overall, 11/35 (31.43%) agoutis were positive to hemoplasmas by quantitative PCR (cycle threshold≤34.4). Sequencing of the 16S ribosomal RNA gene indicated Mycoplasma haemomuris infection, closely related to M. haemomuris subsp. ratti, suggesting hemoplasma transmission from urban rats to agoutis. Because the main route of M. haemomuris transmission has been direct rodent-to-rodent infection, the relatively lower positivity that we detected may be the result of low intraspecies contact due to the smaller social units of agoutis, generally consisting of two to four individuals, and low interspecies contact due to only sporadic agouti-rat interactions in urban settings, compared with other rodent species interactions. Further studies should be conducted to determine whether the hemoplasma infection that we found can cause clinical onset and life-threatening anemia in agoutis.


Subject(s)
Anemia , Dasyproctidae , Mycoplasma Infections , Mycoplasma , Rodent Diseases , Animals , Rats , Brazil/epidemiology , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Rodentia , RNA, Ribosomal, 16S/genetics , Anemia/epidemiology , Anemia/veterinary , Phylogeny , DNA, Bacterial/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology
16.
Vet Res Commun ; 48(3): 1803-1812, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243141

ABSTRACT

Virus monitoring in small mammals is central to the design of epidemiological control strategies for rodent-borne zoonotic viruses. Synanthropic small mammals are versatile and may be potential carriers of several microbial agents. In the present work, a total of 330 fecal samples of small mammals were collected at two sites in the North of Portugal and screened for zoonotic hepatitis E virus (HEV, species Paslahepevirus balayani). Synanthropic small mammal samples (n = 40) were collected in a city park of Porto and belonged to the species Algerian mouse (Mus spretus) (n = 26) and to the greater white-toothed shrew (Crocidura russula) (n = 14). Furthermore, additional samples were collected in the Northeast region of Portugal and included Algerian mouse (n = 48), greater white-toothed shrew (n = 47), wood mouse (Apodemus sylvaticus) (n = 43), southwestern water vole (Arvicola sapidus) (n = 52), Cabrera's vole (Microtus cabrerae) (n = 49) and Lusitanian pine vole (Microtus lusitanicus) (n = 51). A nested RT-PCR targeting a part of open reading frame (ORF) 2 region of the HEV genome was used followed by sequencing and phylogenetic analysis. HEV RNA was detected in one fecal sample (0.3%; 95% confidence interval, CI: 0.01-1.68) from a synanthropic Algerian mouse that was genotyped as HEV-3, subgenotype 3e. This is the first study reporting the detection of HEV-3 in a synanthropic rodent, the Algerian mouse. The identified HEV isolate is probably the outcome of either a spill-over infection from domestic pigs or wild boars, or the result of passive viral transit through the intestinal tract. This finding reinforces the importance in the surveillance of novel potential hosts for HEV with a particular emphasis on synanthropic animals.


Subject(s)
Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , Rodent Diseases , Animals , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Hepatitis E virus/classification , Portugal/epidemiology , Mice , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E/epidemiology , Rodent Diseases/virology , Rodent Diseases/epidemiology , Feces/virology
17.
J Wildl Dis ; 60(1): 126-138, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37909405

ABSTRACT

Toxoplasma gondii is a coccidian parasite able to infect all warm-blooded animals and humans. Rodents are one of the most important intermediate hosts for T. gondii, but little is known about infection in beavers and its clinical relevance. Toxoplasmosis was not considered an important waterborne disease until recently, but with increased outbreaks in humans and animals this perspective has changed. Serum samples from 247 Eurasian beavers (Castor fiber) collected from 2002 to 2022 were tested for antibodies to T. gondii by a commercial ELISA. Antibodies to T. gondii were found in 113 (45.8%) beavers. Higher weight and proximity to urban areas were found to be significant predictors for seropositivity. Additionally, T. gondii DNA was detected in 23/41 brain tissue samples by real-time PCR. Histopathologic examination of brain sections revealed inflammatory changes in 26/40 beavers, mainly characterized by encephalitis, meningitis, choroid plexitis, or a combination of them. In six of these cases the lesions were in direct association with parasitic stages. With an adapted nested PCR multilocus sequence typing and in silico restriction fragment length polymorphism analysis approach, three different T. gondii genotypes were detected in brain samples: the clonal Type II strain (ToxoDB 1), a Type II variant (ToxoDB 3), and a novel genotype exhibiting both Type II and I alleles in a further animal. Toxoplasma gondii infections in beavers have epidemiologic and clinical significance. The high seroprevalence indicates frequent contact with the parasite, and as competent intermediate hosts they may play an important role, contributing to maintaining the life cycle of T. gondii in semiaquatic habitats. In addition, although most beavers appear to develop subclinical to chronic disease courses, acute and fatal outcomes, mainly characterized by encephalitis and generalized infection, do also occur.


Subject(s)
Encephalitis , Rodent Diseases , Toxoplasma , Toxoplasmosis, Animal , Humans , Animals , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Switzerland , Seroepidemiologic Studies , Rodentia , Polymorphism, Restriction Fragment Length , Toxoplasma/genetics , Genotype , Antibodies, Protozoan , Real-Time Polymerase Chain Reaction/veterinary , Encephalitis/veterinary , Rodent Diseases/epidemiology
18.
Vet Res Commun ; 48(2): 1239-1243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38008781

ABSTRACT

In the fall of 2021, a significant mortality event in free-ranging Southern Lapwing (Vanellus chilensis) occurred on a soccer field in southern Brazil. Approximately 130 adult southern lapwings died after showing weakness and flaccid paralysis, characterized by the inability to move or fly and drooped wings. Due to the large number of animals affected, there was concern that they had been criminally poisoned. The affected birds were found to have ingested maggots in fresh poultry litter incorporated into the grass surface. Postmortem examinations of four southern lapwings revealed no significant gross and histological findings. Polymerase Chain Reaction (PCR) for influenza A virus, flavivirus, and paramyxovirus was negative. Based on the epidemiological and clinical findings and the negative viral results, a presumptive diagnosis of botulism was made. This diagnosis was confirmed through mouse bioassay and seroneutralization, which detected botulinum toxin type C. Maggots loaded with botulinum neurotoxins were the probable vehicle for intoxication in the outbreak. Considering the impact of avian botulism on wild bird populations, our results may help prevent similar outbreaks in the future.


Subject(s)
Bird Diseases , Botulism , Charadriiformes , Rodent Diseases , Mice , Animals , Botulism/diagnosis , Botulism/epidemiology , Botulism/veterinary , Bird Diseases/epidemiology , Animals, Wild , Birds , Larva , Disease Outbreaks/veterinary , Rodent Diseases/epidemiology
19.
Zoonoses Public Health ; 71(2): 210-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37772451

ABSTRACT

Hantavirus Pulmonary Syndrome (HPS) is an emerging infectious disease caused by orthohantaviruses in the Americas. In Argentina, since 1995, several reservoirs and virus variants have been described, but the northeastern and central endemic zones in the country include an area without human or rodent infections, despite sharing rodent species with areas with that disease. The aim of this study was to search for orthohantavirus in rodent communities that inhabit this area, which borders two endemic areas of HPS. Small rodents were captured in June of 2022 through a total effort of 644 trap nights distributed in five grids located in the Iberá National Park, Corrientes, Northeastern Argentina. All rodents were sexed, weighed, and the species was recorded. Blood samples were extracted to detect ANDV-specific immunoglobulin G (IgG), and to extract the RNA virus. Trimmed sequences were mapped against reference sequences from GenBank. We captured a total of 36 Oligoryzomys flavescens and 15 Oxymycterus rufus. We detected the O. flavescens species infected with Lechiguanas orthohantavirus in the camping area of the National Park. A nucleotide comparison with previously published sequences shows a 98.34% similarity to the virus obtained from a human case of HPS reported in the adjacent Misiones province. This study demonstrated, for the first time, that O. flavescens is a host of the Lechiguanas orthohantavirus in this zone and contributes to closing information gaps on the distribution of orthohantavirus in Argentina. Additionally, the high similarity with the hantavirus found in the human case of Misiones suggests that the reservoir in that province would also be O. flavescens (not previously confirmed). This information permits us to focus on the preventive measurements to protect the human population.


Subject(s)
Hantavirus Infections , Hantavirus Pulmonary Syndrome , Orthohantavirus , RNA Viruses , Rodent Diseases , Humans , Animals , Rodentia , Argentina/epidemiology , Disease Reservoirs , Rodent Diseases/epidemiology , Hantavirus Pulmonary Syndrome/veterinary , Orthohantavirus/genetics , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary
20.
Ecohealth ; 20(4): 402-415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38091181

ABSTRACT

Previous research conducted in central-east region of Argentina recorded potential orthohantavirus host rodents in diverse environments, but no research has focused particularly on islands, the environments that present the greatest risk to humans. For this reason, the aims of this research were to determine the orthohantavirus host in the rodent community focused on islands of Paraná River Delta, central-east region of Argentina, to identify temporal and spatial factors associated with orthohantavirus prevalence variations, to compare the functional traits of seropositive and seronegative rodents, and to explore the association between orthohantavirus prevalence and rodent community characteristics between August 2014 and May 2018. With a trapping effort of 14,600 trap-nights, a total of 348 sigmodontine rodent specimens belonging to seven species were captured 361 times. The overall antibody prevalence was 4.9%. Particularly, 14.9% of Oligoryzomys flavescens and 1.5% of Oxymycterus rufus, mainly reproductively active adult males, had antibodies against orthohantavirus. Even though O. flavescens inhabit all islands, our results suggest spatial heterogeneity in the viral distribution, with two months after periods of low temperature presenting increases in seroprevalence. This could be a response to the increased proportion of adults present in the rodent population. In addition, an association was found between the high seroprevalence and the diversity of the rodent assemblage. We also found 1.5% of O. rufus exposed to orthohantavirus, which shows us that further investigation of the ecology of the virus is needed to answer whether this species act as a spillover or a new competent host.


Subject(s)
Hantavirus Infections , Hantavirus Pulmonary Syndrome , Orthohantavirus , Rodent Diseases , Humans , Male , Animals , Rodentia , Wetlands , Argentina/epidemiology , Seroepidemiologic Studies , Rodent Diseases/epidemiology , Disease Reservoirs , Hantavirus Infections/epidemiology , Sigmodontinae
SELECTION OF CITATIONS
SEARCH DETAIL
...