Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.057
Filter
1.
BMC Biol ; 22(1): 187, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218870

ABSTRACT

BACKGROUND: Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS: Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS: Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.


Subject(s)
Altitude , Genetic Introgression , Rodentia , Animals , Rodentia/genetics , Rodentia/physiology , Tibet , Adaptation, Physiological/genetics , Ecosystem , Acclimatization/genetics
2.
Mol Phylogenet Evol ; 199: 108163, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079596

ABSTRACT

Subterranean rodents of the genus Ctenomys (tuco-tucos) are endemic to South America and have experienced relatively recent radiation. There are about 67 recognized species that originated in approximately 1-2 MY. They stand out for their species richness, extraordinary chromosomal diversity, and wide range of habitat they occupy in the continent. Phylogenetic relationships among species of tuco-tucos have been challenging to resolve. Groups of closely-related species have been suggested, but their relationships must be resolved. This study estimates the phylogeny of the genus using massive sequencing, generating thousands of independent molecular markers obtained by RADseq, with a taxonomic sampling that includes 66% of the recognized species. The sequences obtained were mapped against the C. sociabilis genome, recovering up to 1,215 widely shared RAD loci with more than 19,000 polymorphic sites. Our new phylogenetic hypothesis corroborated the species groups previously proposed with cytochrome b gene sequences and provided a much greater resolution of the relationships among species groups. The frater group is sister to all other tuco-tucos, whereas some of the earlierliest proposals placed the sociabilis group as sister to all other tuco-tucos. Ctenomys leucodon, previously proposed as an independent lineage, is associated with the frater group with moderate statistical support. The magellanicus and mendocinus are sister groups in a major clade formed by the boliviensis, talarum, tucumanus, torquatus, and opimus groups. Ctenomys viperinus, included in the phylogeny for the first time, belongs to the tucumanus group. This multi-locus phylogenetic hypothesis provides insights into the historical biogeography of understanding this highly diverse genus.


Subject(s)
Genetic Speciation , Phylogeny , Rodentia , Animals , Rodentia/genetics , Rodentia/classification , Sequence Analysis, DNA , Genome/genetics , South America , Genomics
3.
Gene ; 928: 148781, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39029769

ABSTRACT

This study aimed to analyze the distribution of short interspersed elements (SINEs) in the chromosomes of five species of rodents of the genus Proechimys and in a variant karyotype of P. guyannensis. Molecular cytogenetic techniques were used to characterize the sequences of the B1, B4, MAR and THER SINEs, which were used as probes for hybridization in metaphase chromosomes. A wide distribution of SINEs was observed in the chromosomes of the Proechimys species examined, thus indicating differentiation of these retroelements. The signal of the B4 SINE was more evident than that of the B1 SINE, especially in P. echinothrix, P. longicaudatus, and P. cuvieri. Although the signal of the MAR SINE was more explosive than that of the THER SINE, in the species P. echinothrix, P. guyannensis (2n = 46) and P. longicaudatus, its distribution in the karyotypes was similar. The signals of these retroelements occurred at specific heterochromatic sites and were centromeric/pericentromeric and at the terminal regions in most chromosomes. This appears to be a typical distribution pattern of the SINEs and may indicate involvement with rearrangements during karyotypic diversification in Proechimys. The variation of the SINEs in the genome of Proechimys species demonstrates that these elements are distributed in a specific way in this genus and the preference for some sites, considered hotspots for chromosomal breakage, allows us to propose that these elements are related to the karyotypic evolution of Proechimys.


Subject(s)
Karyotype , Rodentia , Short Interspersed Nucleotide Elements , Animals , Rodentia/genetics , Rodentia/classification , Short Interspersed Nucleotide Elements/genetics , Genome/genetics , Chromosome Mapping , Karyotyping/methods , Evolution, Molecular , Chromosomes, Mammalian/genetics
4.
Biochemistry (Mosc) ; 89(6): 1014-1023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981697

ABSTRACT

Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.


Subject(s)
Chiroptera , DNA Repair , Rodentia , Animals , Chiroptera/genetics , Chiroptera/metabolism , Rodentia/genetics , Rodentia/metabolism , DNA Damage , Longevity
5.
Biol Direct ; 19(1): 58, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075541

ABSTRACT

Cluster of Differentiation 1 (CD1) proteins are widely expressed throughout jawed vertebrates and present lipid antigens to specific CD1-restricted T lymphocytes. CD1 molecules play an important role in immune defense with the presence or absence of particular CD1 proteins frequently associated with the functional characteristics of the immune system. Here, we show the evolution of CD1 proteins in the Rodentia family and the diversity among its members. Based on the analysis of CD1 protein-coding regions in rodent genomes and the reconstruction of protein structures, we found that Heterocephalus glaber represents a unique member of the suborder Hystricomorpha with significant changes in protein sequences and structures of the CD1 family. Multiple lines of evidence point to the absence of CD1d and CD1e and probably a dysfunctional CD1b protein in Heterocephalus glaber. In addition, the impact of CD1d loss on the CD1d/Natural killer T (NKT) cell axis in the naked mole-rat and its potential implications for immune system function are discussed in detail.


Subject(s)
Antigens, CD1 , Mole Rats , Animals , Mole Rats/genetics , Mole Rats/immunology , Antigens, CD1/genetics , Antigens, CD1/immunology , Evolution, Molecular , Phylogeny , Immune System , Multigene Family , Natural Killer T-Cells/immunology , Rodentia/genetics , Rodentia/immunology
6.
Sci China Life Sci ; 67(9): 2003-2015, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38902451

ABSTRACT

Jerboas is a lineage of small rodents displaying atypical mouse-like morphology with elongated strong hindlimbs and short forelimbs. They have evolved obligate bipedal saltation and acute senses, and been well-adapted to vast desert-like habitats. Using a newly sequenced chromosome-scale genome of the Mongolian five-toed jerboa (Orientallactaga sibirica), our comparative genomic analyses and in vitro functional assays showed that the genetic innovations in both protein-coding and non-coding regions played an important role in jerboa morphological and physiological adaptation. Jerboa-specific amino acid substitutions, and segment insertions/deletions (indels) in conserved non-coding elements (CNEs) were found in components of proteoglycan biosynthesis pathway (XYLT1 and CHSY1), which plays an important role in limb development. Meanwhile, we found specific evolutionary changes functionally associated with energy or water metabolism (e.g., specific amino acid substitutions in ND5 and indels in CNEs physically near ROR2) and senses (e.g., expansion of vomeronasal receptors and the FAM136A gene family) in jerboas. Further dual-luciferase reporter assay verified that some of the CNEs with jerboa-specific segment indels exerted a significantly different influence on luciferase activity, suggesting changes in their regulatory function in jerboas. Our results revealed the potential molecular mechanisms underlying jerboa adaptation since the divergence from the Eocene-Oligocene transition, and provided more resources and new insights to enhance our understanding of the molecular basis underlying the phenotypic diversity and the environmental adaptation of mammals.


Subject(s)
Adaptation, Physiological , Desert Climate , Ecosystem , Animals , Adaptation, Physiological/genetics , Rodentia/genetics , Rodentia/physiology , Genome/genetics , Genomics , Phylogeny , Evolution, Molecular
7.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558122

ABSTRACT

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Subject(s)
Melatonin , Pineal Gland , Animals , Pineal Gland/metabolism , Genes, Homeobox , Melatonin/metabolism , Rodentia/genetics , Rodentia/metabolism , Transcription Factors/metabolism , Circadian Rhythm
8.
PLoS One ; 19(4): e0301841, 2024.
Article in English | MEDLINE | ID: mdl-38626103

ABSTRACT

The number of people suffering from scrub typhus, which is not of concern, is increasing year by year, especially in Yunnan Province, China. From June 1, 2021 to August 15, 2022, a total of 505 mammalian samples were collected from farm, forest, and residential habitats with high incidence of scrub typhus in Yunnan, China, for nPCR (nested PCR) and qPCR (quantitative real-time PCR) detection of Orientia tsutsugamushi. A total of 4 orders of murine-like animals, Rodentia (87.52%, n = 442), Insectivora (10.29%, n = 52), Lagomorpha (1.79%, n = 9) and Scandentia (0.40%, n = 2) were trapped. Comparing the qPCR infection rates in the three habitats, it was no significant difference that the infection rate of residential habitat (44.44%) and that of the farm habitat (45.05%, P>0.05), which is much larger than that of the forest habitat (3.08%) (P<0.001). Three genotypes (Karp-like, Kato-like and TA763-like) of O. tsutsugamushi were found from Yunnan, China in this study.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Humans , Animals , Mice , Scrub Typhus/diagnosis , Farms , China/epidemiology , Orientia tsutsugamushi/genetics , Rodentia/genetics , Real-Time Polymerase Chain Reaction , Epidemiologic Studies , Forests , Eulipotyphla/genetics
9.
BMC Genomics ; 25(1): 380, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632506

ABSTRACT

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.


Subject(s)
Borrelia , Microbiota , Orientia tsutsugamushi , Scrub Typhus , Trombiculidae , Wolbachia , Animals , Borrelia/genetics , DNA , Multilocus Sequence Typing , Orientia , Orientia tsutsugamushi/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rodentia/genetics , Saudi Arabia , Scrub Typhus/epidemiology , Scrub Typhus/microbiology , Trombiculidae/genetics , Trombiculidae/microbiology , Wolbachia/genetics
10.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38649162

ABSTRACT

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Subject(s)
Evolution, Molecular , Multigene Family , Phylogeny , Receptors, Odorant , Rodentia , Vomeronasal Organ , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Rodentia/genetics , Smell/genetics , Taste/genetics , Vomeronasal Organ/metabolism
11.
Genome Biol Evol ; 16(3)2024 03 02.
Article in English | MEDLINE | ID: mdl-38478715

ABSTRACT

Sucking lice of the parvorder Anoplura are permanent ectoparasites with specific lifestyle and highly derived features. Currently, genomic data are only available for a single species, the human louse Pediculus humanus. Here, we present genomes of two distinct lineages, with different host spectra, of a rodent louse Polyplax serrata. Genomes of these ecologically different lineages are closely similar in gene content and display a conserved order of genes, with the exception of a single translocation. Compared with P. humanus, the P. serrata genomes are noticeably larger (139 vs. 111 Mbp) and encode a higher number of genes. Similar to P. humanus, they are reduced in sensory-related categories such as vision and olfaction. Utilizing genome-wide data, we perform phylogenetic reconstruction and evolutionary dating of the P. serrata lineages. Obtained estimates reveal their relatively deep divergence (∼6.5 Mya), comparable with the split between the human and chimpanzee lice P. humanus and Pediculus schaeffi. This supports the view that the P. serrata lineages are likely to represent two cryptic species with different host spectra. Historical demographies show glaciation-related population size (Ne) reduction, but recent restoration of Ne was seen only in the less host-specific lineage. Together with the louse genomes, we analyze genomes of their bacterial symbiont Legionella polyplacis and evaluate their potential complementarity in synthesis of amino acids and B vitamins. We show that both systems, Polyplax/Legionella and Pediculus/Riesia, display almost identical patterns, with symbionts involved in synthesis of B vitamins but not amino acids.


Subject(s)
Anoplura , Legionella , Pediculus , Vitamin B Complex , Animals , Humans , Phylogeny , Rodentia/genetics , Anoplura/genetics , Pediculus/genetics , Host Specificity/genetics
12.
Cytogenet Genome Res ; 164(1): 33-42, 2024.
Article in English | MEDLINE | ID: mdl-38402854

ABSTRACT

INTRODUCTION: Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS: This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS: We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION: Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.


Subject(s)
Karyotype , Rodentia , Animals , Brazil , Rodentia/genetics , Rodentia/classification , Karyotyping , Male , Chromosome Banding , Female , Chromosomes, Mammalian/genetics , Phylogeny
13.
Commun Biol ; 7(1): 169, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341501

ABSTRACT

Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.


Subject(s)
Nematoda , Rodentia , Animals , Rats , Rodentia/genetics , Immunogenetics , Forests , Zoonoses
14.
Mol Ecol ; 33(5): e17271, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279205

ABSTRACT

Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies.


Subject(s)
Ecosystem , Rodentia , Animals , Rodentia/genetics , Ethiopia , Gene Flow , Microsatellite Repeats , Genetic Variation/genetics , Genetics, Population
15.
Nat Ecol Evol ; 8(2): 339-351, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195998

ABSTRACT

Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai-Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.


Subject(s)
Altitude , Rodentia , Animals , Phylogeny , Rodentia/genetics , Hypoxia/genetics , Genomic Structural Variation
16.
Transl Psychiatry ; 14(1): 59, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272911

ABSTRACT

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.


Subject(s)
DNA Transposable Elements , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Prefrontal Cortex/metabolism , Social Behavior , Zinc Fingers/genetics , Rodentia/genetics , Rodentia/metabolism , Immunity
17.
Sci Rep ; 14(1): 545, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177653

ABSTRACT

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Subject(s)
Rodentia , Sigmodontinae , Animals , Sigmodontinae/genetics , Rodentia/genetics , Phylogeny , Arvicolinae , Muridae , Chromosome Inversion , Chromosome Painting
18.
Jpn J Infect Dis ; 77(1): 55-58, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37648489

ABSTRACT

To demonstrate the transmission cycle of Shimokoshi-type Orientia tsutsugamushi in Shimane Prefecture, field rodents were captured from areas where four human infections caused by the pathogen have been reported. The rodents were investigated for the transmission cycle of the pathogen based on the pathogen's genome, antibodies against the pathogen, and the vector of the pathogen (Leptotrombidium palpale). In addition, the vector was captured from the soil in the study area. A total of 44 rodents were captured. No O. tsutsugamushi DNA was detected in the blood or spleen samples by real-time polymerase chain reaction. However, a specific antibody against the pathogen was detected in 2 out of 44 (4.5%) rodents using the indirect immunoperoxidase method, indicating the presence of the pathogen in the study area. Although 29 L. palpale were identified, DNA detection was not performed because of the insufficient number of vectors, based on the DNA detection rate in previous studies. However, the identification of the vector, as well as the specific antibody in rodents, suggests the presence of the transmission cycle of Shimokoshi-type O. tsutsugamushi in Shimane Prefecture.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Trombiculidae , Animals , Humans , Orientia tsutsugamushi/genetics , Japan/epidemiology , Scrub Typhus/epidemiology , Scrub Typhus/diagnosis , Trombiculidae/genetics , Rodentia/genetics , DNA
19.
Mol Phylogenet Evol ; 191: 107992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092321

ABSTRACT

Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.


Subject(s)
Biological Evolution , Rodentia , Rats , Animals , Phylogeny , Rodentia/genetics , Forests , Ecosystem
20.
Mol Phylogenet Evol ; 193: 107997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128795

ABSTRACT

Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.


Subject(s)
Biodiversity , Ecosystem , Rats , Animals , Phylogeny , Madagascar , Forests , Rodentia/genetics , DNA, Mitochondrial/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL