Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 534
Filter
1.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824245

ABSTRACT

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Subject(s)
Blood Glucose , DNA Methylation , Diabetes Mellitus, Experimental , Plant Extracts , Rosa , Trans-Activators , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/drug therapy , Rosa/chemistry , DNA Methylation/drug effects , DNA Methylation/genetics , Rats , Plant Extracts/pharmacology , Male , Trans-Activators/genetics , Trans-Activators/metabolism , Blood Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Streptozocin , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Insulin/metabolism
2.
Planta Med ; 90(7-08): 595-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843799

ABSTRACT

Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.


Subject(s)
Flowers , Lavandula , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Humans , Flowers/chemistry , Lavandula/chemistry , Rosa/chemistry , Citrus/chemistry , Jasminum/chemistry , Matricaria/chemistry , Aromatherapy , Cananga/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
3.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731600

ABSTRACT

Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.


Subject(s)
Dietary Fiber , Rosa , Dietary Fiber/analysis , Rosa/chemistry , Solubility , Cellulase/metabolism , Cellulase/chemistry , Adsorption
4.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710550

ABSTRACT

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Subject(s)
HMGB1 Protein , NF-kappa B , Non-alcoholic Fatty Liver Disease , Pectins , Rosa , Signal Transduction , Toll-Like Receptor 4 , Animals , Rosa/chemistry , Toll-Like Receptor 4/metabolism , HMGB1 Protein/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , Mice , Pectins/pharmacology , Pectins/chemistry , Pectins/isolation & purification , Male , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Oxidative Stress/drug effects
5.
Food Chem ; 452: 139584, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735110

ABSTRACT

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Subject(s)
Fruit , Metabolomics , Rosa , Taste , Rosa/chemistry , Rosa/metabolism , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Tandem Mass Spectrometry , Flavonoids/analysis , Flavonoids/metabolism , Humans , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism
6.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732622

ABSTRACT

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Subject(s)
Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
7.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675509

ABSTRACT

This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.


Subject(s)
Antioxidants , Aspergillus niger , Dietary Fiber , Fermentation , Fruit , Phytochemicals , Polyphenols , Rosa , Aspergillus niger/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Dietary Fiber/metabolism , Rosa/chemistry , Fruit/chemistry , Phytochemicals/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
Brain Behav ; 14(5): e3507, 2024 May.
Article in English | MEDLINE | ID: mdl-38688895

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Subject(s)
Acetylcholinesterase , Amnesia , Brain-Derived Neurotrophic Factor , Oils, Volatile , Rosa , Scopolamine , Animals , Rats , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Male , Rosa/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Acetylcholinesterase/metabolism , Receptor, Muscarinic M1/metabolism , Rats, Wistar , Nootropic Agents/pharmacology , Disease Models, Animal , Brain/drug effects , Brain/metabolism , Cognition/drug effects , Maze Learning/drug effects
9.
Int J Food Microbiol ; 417: 110686, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38593553

ABSTRACT

Rosa roxburghii Tratt fruits (RRT) exhibit extremely high nutritional and medicinal properties due to its unique phytochemical composition. Probiotic fermentation is a common method of processing fruits. Variations in the non-volatile metabolites and bioactivities of RRT juice caused by different lactobacilli are not well understood. Therefore, we aimed to profile the non-volatile components and investigate the impact of L. plantarum fermentation (LP) and L. paracasei fermentation (LC) on RRT juice (the control, CG). There were both similarities and differences in the effects of LP and LC on RRT juice. Both of the two strains significantly increased the content of total phenolic, total flavonoid, and some bioactive compounds such as 2-hydroxyisocaproic acid, hydroxytyrosol and indole-3-lactic acid in RRT juice. Interestingly, compared with L. paracasei, L. plantarum showed better ability to increase the content of total phenolic and these valuable compounds, as well as certain bioactivities. The antioxidant capacity and α-glucosidase inhibitory activity of RRT juice were notably enhanced after the fermentations, whereas its cholesterol esterase inhibitory activity was reduced significantly. Moreover, a total of 1466 metabolites were identified in the unfermented and fermented RRT juices. There were 278, 251 and 134 differential metabolites in LP vs CG, LC vs CG, LC vs LP, respectively, most of which were upregulated. The key differential metabolites were classified into amino acids and their derivatives, organic acids, nucleotides and their analogues, phenolic acids and alkaloids, which can serve as potential markers for authentication and discrimination between the unfermented and lactobacilli fermented RRT juice samples. The KEGG enrichment analysis uncovered that metabolic pathways, purine metabolism, nucleotide metabolism and ABC transporters contributed mainly to the formation of unique composition of fermented RRT juice. These results provide good coverage of the metabolome of RRT juice in both unfermented and fermented forms and also provide a reference for future research on the processing of RRT or other fruits.


Subject(s)
Fermentation , Fruit and Vegetable Juices , Lactobacillus plantarum , Metabolomics , Rosa , Lactobacillus plantarum/metabolism , Rosa/chemistry , Rosa/microbiology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Metabolomics/methods , Lacticaseibacillus paracasei/metabolism , Fruit/microbiology , Fruit/chemistry , Antioxidants/metabolism , Phenols/metabolism , Phenols/analysis , Flavonoids/analysis , Flavonoids/metabolism , Probiotics/metabolism
10.
Int J Biol Macromol ; 268(Pt 2): 131910, 2024 May.
Article in English | MEDLINE | ID: mdl-38679267

ABSTRACT

In this study, polysaccharides (RRTPs) were extracted from Rosa roxburghii Tratt pomace by hot water or ultrasound (US)-assisted extraction. The structural properties and potential prebiotic functions of RRTPs were investigated. Structural characterization was conducted through HPAEC, HPGPC, GC-MS, FT-IR and SEM. Chemical composition analysis revealed that RRTPs extracted by hot water (RRTP-HW) or US with shorter (RRTP-US-S) or longer duration (RRTP-US-L) all consisted of galacturonic acid, galactose, glucose, arabinose, rhamnose and glucuronic acid in various molar ratio. US extraction caused notable reduction in molecular weight of RRTPs but no significant changes in primary structures. Fecal fermentation showed RRTPs could reshape microbial composition toward a healthier balance, leading to a higher production of beneficial metabolites including total short-chain fatty acids, curcumin, noopept, spermidine, 3-feruloylquinic acid and citrulline. More beneficial shifts in bacterial population were observed in RRTP-HW group, while RRTP-US-S had stronger ability to stimulate bacterial short-chain fatty acids production. Additionally, metabolic profiles with the intervention of RRTP-HW, RRTP-US-S or RRTP-US-L were significantly different from each other. The results suggested RRTPs had potential prebiotic effects which could be modified by power US via molecular weight degradation.


Subject(s)
Polysaccharides , Prebiotics , Rosa , Rosa/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Molecular Weight , Ultrasonic Waves , Fermentation , Chemical Fractionation/methods
11.
Food Chem ; 450: 139388, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640529

ABSTRACT

Rosa rugosa is extensively cultivated in China for its remarkable fragrance and flavor, however, the metabolic changes in roses during growth and drying remain unclear. Our results revealed significant variations in phenol and flavonoid contents and antioxidant capacity in roses (Rosa rugosa f. plena (Regel) Byhouwer) under different conditions. Phenol contents were positively correlated with antioxidant capacity, with phytochemicals being most prominent in unfolded petals. The highest antioxidant capacity and phenol and flavonoid contents were observed in April. Considering their greater consumption value, whole flowers were more suitable than petals alone. Furthermore, considerable sensory and nutritional differences were observed in dried roses. Different drying methods increased their total phenol content of roses by 4.2-5.4 times and the antioxidant capacity by 2.9 times. Metabolomics revealed the altered contents of flavonoids, anthocyanins, lipids, amino acids, and saccharides. This study provides baseline data for the potential of roses as a natural source of antioxidants in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Flavonoids , Flowers , Rosa , Rosa/chemistry , Rosa/growth & development , Rosa/metabolism , Flowers/growth & development , Flowers/chemistry , Flowers/metabolism , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Flavonoids/metabolism , Flavonoids/analysis , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Desiccation , Plant Extracts/metabolism , Plant Extracts/chemistry , China , Humans
12.
J Agric Food Chem ; 72(20): 11503-11514, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634424

ABSTRACT

The fruits of Rosa roxburghii Tratt. are edible nutritional food with high medicinal value and have been traditionally used as Chinese folk medicine for a long time. In this study, 26 triterpenoids including four new pentacyclic triterpenoids, roxbuterpenes A-D (1, 4, 5, and 24), along with 22 known analogues (2, 3, 6-23, 25, and 26), were isolated from the fruits of R. roxburghii. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, HRESIMS and NMR spectroscopy). The absolute configuration of roxbuterpene A (1) was determined by an X-ray crystallographic analysis. This is the first report of the crystal structure of 5/6/6/6/6-fused system pentacyclic triterpenoid. Notably, roxbuterpenes A and B (1 and 4) possessed the A-ring contracted triterpenoid and nortriterpenoid skeletons with a rare 5/6/6/6/6-fused system, respectively. Compounds 1-7, 11, 13-15, 18-20, 24, and 25 exhibited moderate or potent inhibitory activities against α-glucosidase. Compounds 2, 4, 6, 11, and 14 showed strong activities against α-glucosidase with IC50 values of 8.4 ± 1.6, 7.3 ± 2.2, 13.6 ± 1.4, 0.9 ± 0.4, and 12.5 ± 2.4 µM, respectively (positive control acarbose, 10.1 ± 0.8 µM). Compounds 13, 14, and 16 moderately inhibited the release of NO (nitric oxide) with IC50 values ranging from 25.1 ± 2.0 to 51.4 ± 3.1 µM. Furthermore, the expressions of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) were detected by ELISA (enzyme-linked immunosorbent assay), and compounds 13, 14, and 16 exhibited moderate inhibitory effects on TNF-α and IL-6 release in a dose-dependent manner ranging from 12.5 to 50 µM.


Subject(s)
Anti-Inflammatory Agents , Fruit , Glycoside Hydrolase Inhibitors , Rosa , Triterpenes , alpha-Glucosidases , Rosa/chemistry , Fruit/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Structure , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Animals , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Humans , RAW 264.7 Cells
13.
Colloids Surf B Biointerfaces ; 236: 113832, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447447

ABSTRACT

The petal effect is identified as a non-wetting state with high drop adhesion. The wetting behavior of petal surfaces is attributed to the papillose structure of their epidermis, which leads to a Cassie-Baxter regime combined with strong pinning sites. Under this scenario, sessile drops are pearl shaped and, unlike lotus-like surfaces, firmly attached to the surface. Petal surfaces are used as inspiration for the fabrication of functional parahydrophobic surfaces such as antibacterial or water-harvesting surfaces. In this work, two types of rose petals were replicated by using a templating technique based in Polydimethylsiloxane (PDMS) nanocasting. The topographic structure, the condensation mechanism under saturated environments and the wetting properties of the natural rose petal and their negative and positive replicas were analyzed. Finally, we performed prospective ice adhesion studies to elucidate whether petal-like surfaces may be used as deicing solutions.


Subject(s)
Fabaceae , Rosa , Surface Properties , Rosa/chemistry , Prospective Studies , Wettability
14.
J Cosmet Dermatol ; 23(6): 2156-2169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38406887

ABSTRACT

BACKGROUND: Acne is a common skin issue that typically occurs during adolescence. It causes long-lasting redness and swelling in the skin. An alternative approach to treating acne could involve using a cosmetic facial mask containing herbal ingredients such as Curcumin and Rosa Damascena extract for its antibacterial properties. AIMS: This study aims to create and try out a peel-off mask gel made from Curcumin and R. Damascena extract. This gel is intended to have the ability to kill bacteria such as Staphylococcus aureus, Escherichia coli, and Propionibacterium acnes and remove dead cells from the skin surface. METHODS: The peel-off mask was made using polyvinyl alcohol (PVA) in 8% and 10% as solidifier. The evaluation of peel-off masks comprises the examination of physiochemical and mechanical aspects. Furthermore, their longevity, effectiveness, and antibacterial properties are also considered. RESULTS: The white color, pleasant smell, and soft texture were the defining features of the peel-off gel mask. The changes in PVA affect the pH level, thickness, and how quickly the peel-off mask dries. The stability test found that the peel-off mask had no significant physical changes when exposed to freezing and thawing. However, there were some differences in color and separation when using the real-time method. A prepared peel-off mask containing 10% PVA and curcumin works best against P. acne. The amount of PVA in the formula affected the physical and chemical qualities, but it did not impact on the antibacterial abilities of the peel-off mask gel. The best formula that gives the best results uses 10% PVA + curcumin. CONCLUSIONS: Using the Curcumin and R. Damascena extract in the creation of the peel-off mask gel ensures its efficacy and safety for skin application.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Antioxidants , Curcumin , Plant Extracts , Rosa , Staphylococcus aureus , Curcumin/pharmacology , Curcumin/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rosa/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Antioxidants/pharmacology , Antioxidants/administration & dosage , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Staphylococcus aureus/drug effects , Propionibacterium acnes/drug effects , Polyvinyl Alcohol/chemistry , Escherichia coli/drug effects , Skin Cream/administration & dosage , Skin/drug effects , Skin/microbiology , Microbial Sensitivity Tests
15.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396810

ABSTRACT

RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, ß-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.


Subject(s)
Fruit , Rosa , Fruit/chemistry , Rosa/chemistry , Polysaccharides/chemistry , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
16.
J Food Sci ; 89(3): 1387-1402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282373

ABSTRACT

The edible rose (Rosa Crimson Glory) petals were dried using infrared-assisted spouted bed drying technology. The effects of different drying temperature conditions (30, 35, 40, 45, and 50°C, as well as stepped heating drying [SHD] and stepped cooling drying) on the drying characteristics, physicochemical properties, antioxidant capacity, and changes in volatile flavor compounds of the rose petals were investigated. The results showed that the drying time was shortened with increasing drying temperature. Both variable temperature drying processes gave the shortest drying times. Optimal color retention of rose petals was achieved at a constant temperature of 40°C and SHD. Increased drying temperature resulted in higher water-soluble polysaccharide content in the dried rose petals, whereas lower temperatures facilitated anthocyanin preservation. The variable temperature drying processes favored the retention of water-soluble polysaccharides in rose petals, but not anthocyanins. Regarding antioxidant capacity, the samples dried at 40°C and those subjected to the two variable temperature drying processes performed better. This study also analyzed the differences in volatile flavor compounds of rose petals dried under different drying conditions. It was found that the majority of volatile flavor compounds in the rose petals dried by SHD exhibited higher content levels than the other drying conditions. Therefore, considering a thorough evaluation of all relevant factors, it was clear that utilizing the SHD process was the most efficient method for obtaining the best quality rose petals overall.


Subject(s)
Antioxidants , Rosa , Temperature , Antioxidants/chemistry , Rosa/chemistry , Desiccation/methods , Anthocyanins/chemistry , Water
17.
Int J Biol Macromol ; 259(Pt 1): 127926, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37956813

ABSTRACT

In this work, Rosa roxburghii Tratt fruit polysaccharides (RPs) were extracted by ultrasound-assisted enzymatic method. The highest extraction yield of RPs was 4.78 ±â€¯0.10 % under the optimal extraction conditions. Two purified fractions named RP1 and RP3 were obtained and systematically characterized by a combination strategy of FT-IR, monosaccharide composition, molecular weight distribution, methylation and 2D NMR spectroscopy analyses. Structural analysis showed that the main chain of RP1 was composed of rhamnogalacturonan type I (RG-I), while the side chains were rich in arabinogalactan and galactose. RP3 was composed of long homogalacturonan (HG) backbone interspersed with alternating sequences of RG-I domains, with galactose and arabinose side chains. RP1 and RP3 induced apoptosis of MCF-7 cells in a dose dependent manner in vitro especially for RP1, and had no effect on L929 cells. Furthermore, the possible anticancer mechanisms were revealed, and results suggested that RP1 induced apoptosis through ROS-dependent pathway and mitochondrial pathway. The results of this work not only provided an efficient extraction method and theoretical basis for the application of RPs, but also may contribute to develop novel functional foods or pharmaceutical products for the prevention and treatment of human breast cancer disease.


Subject(s)
Rosa , Humans , Rosa/chemistry , Galactose/analysis , Fruit/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry
18.
J Sci Food Agric ; 104(6): 3392-3404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105397

ABSTRACT

BACKGROUND: The fruits of the genus Rosa, commonly known as rosehips, have attracted significant attention owing to their rich content of various bioactive compounds. However, their utility is generally secondary to the ornamental appeal of their flowers. This study aimed to explore the quality differences among tea-scented rosehips found in Yunnan, China, including those of Rosa odorata var. odorata (RO), Rosa odorata var. gigantea (RG), and Rosa yangii (RY). Morphological characteristics, chemical composition, and antioxidant activity of their fruits were evaluated. RESULTS: The study revealed significant variability in composition and biological activities based on fruit color. RO exhibited the highest levels of polyphenols, flavonoids, anthocyanins, carotenoids, and vitamin C, with the strongest antioxidant activity (10.99 µmol Trolox·g-1 ), followed by RG (7.91 µmol Trolox·g-1 ) and RY (6.52 µmol Trolox·g-1 ). This supports RO's potential as a functional food source. Untargeted metabolomics identified and quantified 502 metabolites, with flavonoids (171) and phenolic acids (147) as the main metabolites. The differential metabolites among the fruits are primarily enriched for flavonoid biosynthesis and phenylpropanoid biosynthesis pathways. Insights into color formation supported the role of anthocyanins, flavones, and flavonols in fruit color variation. CONCLUSION: Tea-scented rosehips offer vibrant colors and high nutritional value with potent biological activities. Rosa odorata var. odorata stands out as a functional food source owing to its rich bioactive compounds. These findings lay the groundwork for utilizing rosehips in functional foods, health supplements, and food additives, emphasizing the practical and beneficial applications of Rosa spp. independent of their ornamental value. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Rosa , Antioxidants/chemistry , Rosa/chemistry , Anthocyanins/analysis , China , Flavonoids/analysis , Pigmentation , Tea/metabolism , Fruit/chemistry
19.
Molecules ; 28(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38138511

ABSTRACT

Defatted seed residues after the extraction of rose oil have their potential not fully described in the existing literature. The aim of this study was to determine and characterize the components important for the human body that are found in Rosa rugosa defatted seeds, including dietary fibers, proteins, selected minerals, polyphenols and antioxidant activity. Rosa rugosa seeds defatted with CO2 in supercritical conditions are a rich source of dietary fibers (approx. 65%) and proteins (15%); their macronutrients include the following: Ca (175.9), Mg (83.9), K (199.2) and Na (3.5 mg/100 g). They also contain polyphenols, including flavanols (0.9%) and total ellagic acid (0.5%), and they exhibit antioxidant activity (143.8 µM TAEC/g). Tellimagrandin I and II and rugosin A were found in the extracts, and ellagitannins with a yet-indeterminate structure were also present. The seeds also contained ellagitannin derivatives-galloyl-HHDP-glucose and bis-HHDP-glucose-at the same time, and they are characterized by a low-fat content-0.4%. The energy value of defatted rose seeds is about half the energy value of popular seeds used in the food industry. The findings of the present study suggest that defatted rosehip seeds, the by-product of rosehip processing, could be an important source of bioactive components like dietary fibers, flavanols, ellagitannins and mineral compounds. Therefore, defatted rose seeds are very promising and require further research, because they can potentially be used as a natural source of chemopreventive agents.


Subject(s)
Antioxidants , Rosa , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Rosa/chemistry , Hydrolyzable Tannins , Polyphenols/chemistry , Minerals , Dietary Fiber , Glucose
20.
Sci Rep ; 13(1): 22721, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123628

ABSTRACT

Rosa canina L. (Rosaceae), commonly known as the rose hip, is originated from Europe, Africa, and Asia with a long history in medicinal applications. This study aimed to analyze the morphological traits, fatty acids profile, and content of phenolic compounds, anthocyanins, vitamin C, total carotenoid, total phenol, total flavonoid, and antioxidant activity of the fruits of eleven Iranian R. canina ecotypes (RCEs). The highest coefficient of variation was obtained in 1000 seed weight (46.57%). The seed oil varied from 8.08 ± 0.17% to 16.91 ± 0.35%. Linoleic (35.41 ± 0.78% to 49.59 ± 0.96%) and eicosanoic (17.67 ± 0.06% to 25.36 ± 0.54%) acids were the predominant fatty acids in the studied samples. The anthocyanin content in the fruits was ranged from 0.98 ± 0.03 to 4.41 ± 0.04 mg cyanidin 3-glucoside/100 g of dry weight (mg C3G/100 g DW). The high content of vitamin C (103.51 ± 1.24-419.70 ± 3.12 mg/100 g DW), total carotenoid (111.22 ± 0.78-206.98 ± 1.25 mg ß-carotene equivalents per g of dry weight (mg ß-CARE/g DW)), total phenol (52.87 ± 0.82-104.52 ± 0.23 mg GAE/g DW), and total flavonoid (14.20 ± 0.12-25.18 ± 0.47 mg RE/g DW) were observed in the studied samples. Catechin (20.42 ± 0.47-19.22 ± 0.13 µg/g DW) was the major phenolic compound. The high antioxidant activity in the fruits of the plant was recorded in the studied RCEs (IC50 = 12.54 ± 0.18-26.33 ± 0.13 µg/ml). A significant correlation between some phytochemical compounds (dependent variable) and morphological features (independent variable) was found. Based on our findings, the fruit of the studied ecotypes can be used for future breeding programs and drug development.


Subject(s)
Antioxidants , Rosa , Antioxidants/chemistry , Rosa/chemistry , Anthocyanins , Fatty Acids , Iran , Ecotype , Plant Extracts/chemistry , Ascorbic Acid , Flavonoids/chemistry , Phenols/analysis , Carotenoids/chemistry , Seeds/chemistry , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL
...