Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 818
Filter
1.
Anal Biochem ; 691: 115553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697592

ABSTRACT

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Subject(s)
Acetic Acid , Electrophoresis, Polyacrylamide Gel , Methanol , Microwaves , Proteins , Electrophoresis, Polyacrylamide Gel/methods , Methanol/chemistry , Proteins/analysis , Acetic Acid/chemistry , Staining and Labeling/methods , Rosaniline Dyes/chemistry
2.
Food Chem ; 451: 139454, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703725

ABSTRACT

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.


Subject(s)
Gold , Rosaniline Dyes , Silicon , Spectrum Analysis, Raman , Rosaniline Dyes/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Silicon/chemistry , Animals , Ananas/chemistry , Metal Nanoparticles/chemistry , Bivalvia/chemistry , Limit of Detection , Surface Properties
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124447, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38761471

ABSTRACT

Label-free nucleic acid fluorescent probes are gaining popularity due to their low cost and ease of application. However, the primary challenges associated with label-free fluorescent probes stem from their tendency to interact with other biomolecules, such as RNA, proteins, and enzymes, which results in low specificity. In this work, we have developed a simple detection platform that utilizes Fe3O4@PPy in combination with a label-free nucleic acid probe, 1,1,2,2-tetrakis[4-(2-bromo-ethoxy)phenyl]ethene (TTAPE) or Malachite Green (MG), for highly selective detection of metal ions, acetamiprid, and thrombin. Fe3O4@PPy not only adsorbs aptamers through electrostatic interactions, π-π bonding, and hydrogen bonding, but also quenches the fluorescence of the TTAPE/MG. Upon the addition of target compounds, the aptasensor separates from Fe3O4@PPy through magnetic separation. Moreover, by changing different aptamers, the aptasensor was applied to detect metal ions, acetamiprid, and thrombin, with the turned-on photoluminescence (PL) emission intensity recorded and showing linearity to the concentrations of targets. The robustness of method was demonstrated by applying it to real samples, which included vegetables (for detecting acetamiprid with LODs of 0.02 and 0.04 ng/L), serum samples (for detecting thrombin with LODs of 5.5 and 4.3 nM), and water samples (for detecting Pb2+ with an LOD of 0.17 nM). Therefore, due to its impressive selectivity and sensitivity, the Fe3O4@PPy aptasensor could be utilized as a universal detection platform for various clinical and environmental applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes , Neonicotinoids , Spectrometry, Fluorescence , Thrombin , Aptamers, Nucleotide/chemistry , Thrombin/analysis , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Neonicotinoids/analysis , Spectrometry, Fluorescence/methods , Limit of Detection , Rosaniline Dyes/analysis , Rosaniline Dyes/chemistry , Humans , Polymers/chemistry
4.
Chemosphere ; 360: 142376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777197

ABSTRACT

Currently, adsorbents with high adsorption performance for eliminating pollutants from discharged wastewater have received many researchers' attention. To this aim, a novel AMXGO absorbent was fabricated by intercalating graphene oxide (GO) into alkalized MXene (Alk-MXene) layer which exhibited high efficacy for the removal of cationic Malachite Green (MG) and anionic Congo Red (CR). Analysis of FTIR, XRD, SEM and TG presented that AMXGO absorbent have a typical three-dimensional layer by layer structure and abundant oxygen-containing groups and its thermal stability was remarkably improved. BET results elucidated that AMXGO1 adsorbent has larger specific surface area and pore volume (16.686 m2 g-1, 0.04733 cm3 g-1) as compared to Alk-MXene (4.729 m2 g-1, 0.02522 cm3 g-1). A dependence of adsorption performance on mass ratio between Alk-MXene and GO, initial dye concentration, contact time, temperature and pH was revealed. Maximum adsorption capacity of MG (1111.6 mg/g) and CR (1133.7 mg/g) were particularly found for AMXGO1 absorbent with a mass ratio of 3:1 and its removal for both dyes were higher than 92%. The adsorption process of AMXGO1 adsorbent for both MG and CR complies with pseudo-second-order kinetic model and Freundlich isotherm model. In addition, adsorption mechanism was explored that synergism effects as electrostatic attraction, π-π conjugates, intercalation adsorption and pore filling were the main driving force for the high adsorption performance of dye. Therefore, AMXGO adsorbent has a potential application prospect in the purification of dye wastewater.


Subject(s)
Congo Red , Graphite , Rosaniline Dyes , Wastewater , Water Pollutants, Chemical , Graphite/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Rosaniline Dyes/chemistry , Rosaniline Dyes/isolation & purification , Congo Red/chemistry , Wastewater/chemistry , Water Purification/methods , Kinetics , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Hydrogen-Ion Concentration
5.
Food Chem ; 452: 139543, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735107

ABSTRACT

Malachite green (MG), a widely used antiparasitic agent, poses health risks to human due to its genotoxic and carcinogenic properties. Herein, a stable dual-emission fluoroprobe of carbon dots/copper nanoclusters is prepared for highly selective detection of MG based on the inner filter effect. This probe exhibits characteristic emission bands at 435 and 625 nm when excited at 376 nm. After adding MG, the both emission signals were significantly quenched, and the ratio of fluorescence intensity (F435/F625) was linearly related to the concentration of MG in the range of 0.05-40 µmol L-1 with a limit of detection of 18.2 nmol L-1. Meanwhile, the two signals exhibit linear relationships with the concentration of MG, respectively, and the corresponding detection results were consistent. The fluoroprobe was successfully used for the detection of MG in fish samples with the recoveries ranging from 96.0% to 103.8% and a relative standard deviation of <3.3%.


Subject(s)
Carbon , Copper , Fishes , Nanocomposites , Quantum Dots , Rosaniline Dyes , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Copper/chemistry , Copper/analysis , Animals , Quantum Dots/chemistry , Carbon/chemistry , Nanocomposites/chemistry , Spectrometry, Fluorescence/methods , Food Contamination/analysis , Limit of Detection , Fluorescence , Fluorescent Dyes/chemistry
6.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1818-1825, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812194

ABSTRACT

A label-free fluorescence method based on malachite green/aptamer was developed for the detection of ochratoxin A(OTA) in traditional Chinese medicines. Malachite green itself exhibits weak fluorescence. Upon interaction with the aptamer specific to OTA, the G-quadruplex structure of the aptamer provides a protective microenvironment for malachite green, which significantly enhances its fluorescence signal. After OTA is added, preferential binding occurs between the aptamer and OTA, and malachite green will be released from the aptamer, which weakens the fluorescence signal. According to this principle, this paper established a fluorescence method with the aptamer of OTA as the recognition element and malachite green as the fluorescent probe for the detection of OTA in traditional Chinese medicines. The key experimental factors such as the concentrations of metal ions, aptamer, and malachite green were optimized to improve the performance of the method. OTA was detected under the optimal experimental conditions, and the results showed that with the increase in OTA concentration, the fluorescence signal gradually weakened. Within the range of 20-1 000 nmol·L~(-1), the OTA concentration was linearly correlated with the fluorescence signal ratio ΔF/F(ΔF=F_0-F, where F_0 is the fluorescence signal of aptamer/malachite green, and F is the fluorescence signal of OTA/aptamer/malachite green), with R~2 of 0.995. The limit of detection of the established method was 7.1 nmol·L~(-1). Furthermore, three substances structurally similar to OTA and two mycotoxins that may coexist with OTA were selected for experiments, which aimed to examine the cross-reactivity and specificity of the established method. The cross-reactivity experiments demonstrated that the interferers did not significantly affect the fluorescence signal of the detection system. The specificity experiments revealed that when mycotoxins were mixed with OTA, the fluorescence signal generated by the mixture closely resembled that of OTA itself. The results indicated that even in the presence of interferents, the established method remained unaffected and demonstrated excellent specificity. Additionally, this method exhibited remarkable reproducibility and stability. In the case of simple centrifugation and dilution of traditional Chinese medicine samples(Puerariae Lobatae Radix, Sophorae Flavescentis Radix, and Periplocae Cortex), the OTA detection method was applicable, with recovery rates ranging from 91.5% to 121.3%. Notably, this approach does not need complex pretreatment of traditional Chinese medicines while offering simple operation, low detection costs, and short detection time. Furthermore, by incorporating aptamers into the quality evaluation of traditional Chinese medicines, this method expands the application scope of aptamers.


Subject(s)
Aptamers, Nucleotide , Drugs, Chinese Herbal , Ochratoxins , Rosaniline Dyes , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Ochratoxins/analysis , Ochratoxins/chemistry , Aptamers, Nucleotide/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Fluorescence/methods , Drug Contamination/prevention & control , Fluorescence , Medicine, Chinese Traditional
7.
Environ Res ; 252(Pt 3): 119046, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704004

ABSTRACT

Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.


Subject(s)
Charcoal , Rosaniline Dyes , Thermodynamics , Water Pollutants, Chemical , Zinc Oxide , Rosaniline Dyes/chemistry , Zinc Oxide/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Coloring Agents/chemistry
8.
Talanta ; 274: 126039, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604043

ABSTRACT

The development of intelligent, sensitive, and visual methods for the rapid detection of veterinary drug residues is essential to ensure food quality and safety. Here, a smartphone-based dual inverse signal MOFs fluorescence sensing system was proposed for intelligent in-site visual detection of malachite green (MG). A UiO-66-NH2@RhB-dual-emission fluorescent probe was successfully synthesized in one step using a simple one-pot method. The inner filter effect (IFE) quenches the red fluorescence, while hydrogen bonding interaction enhances the blue fluorescence, enabling highly sensitive, accurate, and visual detection of MG dual inverse signals through fluorescence analysis. The probe showed great linearity over a wide range of 0.1-100 µmol/L, with a limit of detection (LOD) of 20 nmol/L. By integrating smartphone photography and RGB (red, green, and blue) analysis, accurate quantitative analysis of MG in water and actual fish samples can be achieved within 5 min. This developed platform holds great promise for the on-site detection of MG in practical applications, with the advantages of simplicity, cost-effectiveness, and rapidity. Consequently, it may open up a new pathway for on-site evaluation of food safety and environmental health.


Subject(s)
Fluorescent Dyes , Rosaniline Dyes , Smartphone , Rosaniline Dyes/analysis , Rosaniline Dyes/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , Limit of Detection , Fluorescence , Fishes , Water Pollutants, Chemical/analysis
9.
Food Chem ; 451: 139399, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663240

ABSTRACT

Malachite green (MG) has been illicitly employed in aquaculture as a parasiticide, however, its teratogenic and carcinogenic effects pose a significant human health threat. Herein, a dual-mode colorimetric and electrochemical aptasensor was fabricated for MG detection, capitalizing on the robust catalytic and peroxidase-like activity of P-CeO2NR@Mxene and good capture efficiency of a tetrahedral DNA nanostructure (TDN) designed with multiple aptamers (m-TDN). P-CeO2NR@Mxene-modified complementary DNA (cDNA) served as both colorimetric and electrochemical probe. m-TDN was attached to AuE to capture MG and P-CeO2NR@Mxene/cDNA. The superior aptamer and MG binding to cDNA regulated signals and enabled precise MG quantification. The further introduced Exo I enabled aptamer hydrolysis, releasing MG for further binding rounds, allowing target recycling amplification. Under the optimal conditions, the aptasensor reached an impressively low detection limit 95.4 pM in colorimetric mode and 83.6 fM in electrochemical mode. We believe this dual-mode approach holds promise for veterinary drug residue detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Electrochemical Techniques , Rosaniline Dyes , Aptamers, Nucleotide/chemistry , Rosaniline Dyes/chemistry , Rosaniline Dyes/analysis , Biosensing Techniques/instrumentation , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Limit of Detection , Food Contamination/analysis
10.
Chemosphere ; 355: 141696, 2024 May.
Article in English | MEDLINE | ID: mdl-38499077

ABSTRACT

The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.


Subject(s)
Diatoms , Microalgae , Water Pollutants, Chemical , Adsorption , Kinetics , Rosaniline Dyes/chemistry , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Thermodynamics
11.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453761

ABSTRACT

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Subject(s)
Rosaniline Dyes , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Rosaniline Dyes/chemistry , Zinc Oxide/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Nanoparticles/chemistry , Plant Extracts/chemistry , Coloring Agents/chemistry , Flowers/chemistry , Ferric Compounds/chemistry
12.
Environ Res ; 251(Pt 1): 118647, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460666

ABSTRACT

In this work, the self-assembled SrTiO3 (STO) microstructures were synthesized via a facile one-step solvothermal method. As the solvothermal temperature increased from 140 °C to 200 °C, the STO changed from a flower-like architecture to finally an irregularly aggregated flake-like morphology. The photocatalytic performance of as-synthesized samples was assessed through the degradation of rhodamine B (RhB) and malachite green (MG) under simulated solar irradiation. The results indicated that the photocatalytic performance of STO samples depended on their morphology, in which the hierarchical flower-like STO synthesized at 160 °C demonstrated the highest photoactivities. The photocatalytic enhancement of STO-160 was benefited from its large surface area and mesoporous configuration, hence facilitating the presence of more reactive species and accelerating the charge separation. Moreover, the real-world practicality of STO-160 photocatalysis was examined via the real printed ink wastewater-containing RhB and MG treatment. The phytotoxicity analyses demonstrated that the photocatalytically treated wastewater increased the germination of mung bean seeds, and the good reusability of synthesized STO-160 in photodegradation reaction also promoted its application in practical scenarios. This work highlights the promising potential of tailored STO microstructures for effective environmental remediation applications.


Subject(s)
Oxides , Photolysis , Strontium , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Oxides/chemistry , Strontium/chemistry , Catalysis , Rosaniline Dyes/chemistry , Rhodamines/chemistry , Coloring Agents/chemistry , Sunlight , Wastewater/chemistry , Waste Disposal, Fluid/methods
13.
Environ Res ; 250: 118510, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38387495

ABSTRACT

The literature rarely compiles studies devoted to the removal of pollutants in aqueous media comparing adsorption and photocatalytic degradation, and does not pay enough attention to the analysis of combined adsorption-photocatalytic oxidation processes. In the present manuscript, the removal of malachite green (MG) from aqueous solutions has been investigated in three different sustainable scenarios: i) adsorption on activated carbon (AC) derived from a residue, luffa cylindrica, ii) photocatalytic oxidation under simulated solar light using titanium dioxide (TP) and iii) combined adsorption-photocatalytic oxidation using TP-AC (70/30 wt./wt.) under simulated solar light. The study has revealed that in the three scenarios and studied conditions, the total removal of this endocrine-disrupting dye from the solution takes place in the assayed time, 2 h, in some cases just in a few minutes. MG adsorption in the AC is a very fast and efficient removal method. MG photocatalytic oxidation with TP also occurs efficiently, although the oxidized MG is not totally mineralized. MG removal using the TP-AC composite under simulated solar light occurs only slightly faster to the MG adsorption in the AC, being adsorption the dominating MG removal mechanism for TP-AC. Thus, more than 90% of the removed MG with TP-AC under simulated solar light is adsorbed in this carbon-containing composite. The obtained results highlight the interest in adsorption, being the selection of the most suitable removal method dependent on several factors (i.e., the cost of the AC regeneration, for adsorption, or the toxicity of the intermediate oxidation species, for photooxidation). Paying attention to MG photooxidation with TiO2, comparison of two working photodegradation schemes shows that the direct photodegradation of MG from solution, avoiding any initial dark equilibrium period, is more efficient from a time perspective. The use of scavengers has proved that MG photodegradation occurs via an oxidation mechanism dominated by superoxide anion radicals.


Subject(s)
Oxidation-Reduction , Rosaniline Dyes , Titanium , Water Pollutants, Chemical , Rosaniline Dyes/chemistry , Titanium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Catalysis , Charcoal/chemistry , Water Purification/methods , Photolysis , Photochemical Processes
14.
Int J Phytoremediation ; 26(8): 1321-1335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409765

ABSTRACT

This research explores the feasibility of using date seeds (DS), an agricultural waste, for the adsorption of malachite green (MG) dye from synthesized wastewater. The characterization of the DS before and after adsorption was accomplished by FTIR, SEM, BET, and EDX measurements. Batch adsorption experiments were investigated for MG dye adsorption from aqueous solution onto the DS. The effect of different parameters such as solution pH, adsorbent dose, contact time, temperature, and the initial dye concentration were studied. The optimum pH, adsorbent dose, temperature, and contact time for the dye removal were found to be 5, 0.1 g, 25 °C, and 30 min, respectively. The equilibrium studies for the data with Langmuir, Freundlich, and Temkin isotherms showed that Freundlich isotherm is the best model to describe the adsorption of MG onto the DS particles which has a heterogeneous surface. It was found that the adsorption process follows a pseudo-second-order kinetic model which revealed that the intra-particle diffusion stage is the rate-controlling stage for the process. The thermodynamic parameters ΔG, ΔS, and ΔH suggest the possibility of chemisorption and physisorption simultaneously and indicate the exothermic and spontaneous characters of the adsorption of MG dye on DS with negative values of ΔH and ΔG.


This study used agriculture waste (date seeds) which is proved to be an environmentally friendly and low-cost adsorbent. The date seeds were shown to be a promising adsorbent, demonstrating high surface area and well-developed porosity. The prepared adsorbent will have a great impact on wastewater treatment technology and possible applications at a large scale. Thus, widespread and great progress in this area can be expected in the future.


Subject(s)
Rosaniline Dyes , Seeds , Thermodynamics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Rosaniline Dyes/chemistry , Adsorption , Wastewater/chemistry , Kinetics , Seeds/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Coloring Agents/chemistry
15.
Nucleic Acids Res ; 52(7): e36, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38407347

ABSTRACT

Cellular RNA is asymmetrically distributed in cells and the regulation of RNA localization is crucial for proper cellular functions. However, limited chemical tools are available to capture dynamic RNA localization in complex biological systems with high spatiotemporal resolution. Here, we developed a new method for RNA proximity labeling activated by near-infrared (NIR) light, which holds the potential for deep penetration. Our method, termed FAP-seq, utilizes a genetically encoded fluorogen activating protein (FAP) that selectively binds to a set of substrates known as malachite green (MG). FAP binding restricts the rotation of MG and rapidly activates its fluorescence in a wash-free manner. By introducing a monoiodo modification to MG, we created a photosensitizer (MG-HI) with the highest singlet oxygen generation ability among various MG derivatives, enabling both protein and RNA proximity labeling in live cells. New insights are provided in the transcriptome analysis with FAP-seq, while a deeper understanding of the symmetry-breaking structural arrangement of FAP-MG-HI was obtained through molecular dynamics simulations. Overall, our wash-free and NIR light-inducible RNA proximity labeling method (FAP-seq) offers a powerful and versatile approach for investigating complex mechanisms underlying RNA-related biological processes.


Subject(s)
Fluorescent Dyes , Infrared Rays , Photosensitizing Agents , RNA , Rosaniline Dyes , Rosaniline Dyes/chemistry , Photosensitizing Agents/chemistry , Humans , Fluorescent Dyes/chemistry , RNA/chemistry , RNA/metabolism , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Molecular Dynamics Simulation , HeLa Cells
16.
J Environ Manage ; 353: 120114, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38280250

ABSTRACT

The laccase mediator system (LMS) with a broad substrate range has attracted much attention as an efficient approach for water remediation. However, the practical application of LMS is limited due to their high solubility, poor stability and low reusability. Herein, the bimetallic Cu/ZIFs encapsulated laccase was in-situ grown in poly(vinyl alcohol) (PVA) polymer matrix. The PVA-Lac@Cu/ZIFs hydrogel was formed via one freeze-thawing cycle, and its catalytic stability was significantly improved. The mediator was further co-immobilized on the hydrogel, and this hierarchically co-immobilized ABTS/PVA-Lac@Cu/ZIFs hydrogel could avoid the continuous oxidation reaction between laccase and redox mediators. The co-immobilized LMS biocatalyst was used to degrade malachite green (MG), and the degradation rate was up to 100 % within 4 h. More importantly, the LMS could be recycled synchronously from the dye solutions and reused to degrade MG multiple times. The degradation rate remained above 69.4 % after five cycles. Furthermore, the intermediate products were detected via liquid chromatography-mass spectrometry, and the potential degradation pathways were proposed. This study demonstrated the significant potential of utilizing the MOF nanocrystals and hydrogel as a carrier for co-immobilized LMS, and the effective reuse of both laccase and mediator was promising for laccase application in wastewater treatment.


Subject(s)
Enzymes, Immobilized , Laccase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Laccase/chemistry , Laccase/metabolism , Hydrogels/chemistry , Rosaniline Dyes/chemistry
17.
Int J Phytoremediation ; 26(8): 1193-1211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38226539

ABSTRACT

In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.


Cr-doped ZnO NRs by green method using flower extract of Rhododendon arboretum were prepared for the first time under ambient reaction conditions.Effect of Dopant i.e. Cr on Photocatalytic activity have been exploited.Selective photocatalytic degradation of cationic dyes i.e. MG, and FB has been achieved in 60­90 minutes.Optimization of reaction condition and various parameters has also been carried out.Recyclability of Cr-doped ZnO NRs was also evaluated and were found to be reusable for 11 cycles for degradation.


Subject(s)
Chromium , Flowers , Nanotubes , Plant Extracts , Rhododendron , Rosaniline Dyes , Zinc Oxide , Nanotubes/chemistry , Chromium/chemistry , Rosaniline Dyes/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Zinc Oxide/chemistry , Rhododendron/chemistry , Green Chemistry Technology , Biodegradation, Environmental , Catalysis , Coloring Agents/chemistry , Photolysis , Water Pollutants, Chemical/chemistry
18.
Int J Phytoremediation ; 26(7): 1154-1167, 2024 May.
Article in English | MEDLINE | ID: mdl-38149624

ABSTRACT

The discharge of colored effluent into water bodies is a big concern; hence, the current work was designed to fabricate a superior nanocomposite (NBM) using the Newbouldia laevis husk (NB) and functionalized multiwalled carbon nanotubes (f-MWCNTs) for the adsorption of malachite green oxalate (MGO). Brunauer-Emmett-Teller (BET) surface analysis was used to assess the specific surface area of NB (0.7699 m2 g-1) and NBM (94.006 m2 g-1). Fourier transform infrared spectroscopy (FTIR) was employed to determine the chemical moieties on the surface of the adsorbent. Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA) were used to analyze the surface morphology and the thermal behavior of the adsorbents. Essential factors of the adsorption process were investigated, and it was revealed that pH 6.0, adsorbent dose of 0.05 g, contact time 80 min, concentration of 100 mg dm-3 and maximum adsorption capacity of 35.78 mg g-1 (NB) and 69.97 mg g-1 (NBM) were the optimal parameters. The NB and NBM adsorption processes followed a pseudo-first-order kinetic model. The exothermic and endothermic adsorptive processes were noticed to be the best descriptions of MGO elimination by NB and NBM, respectively. The uptake of MGO by NB and NBM was best described by models of Freundlich and Langmuir isotherms. Besides, NBM demonstrated uptake efficiency that is >80% after the fourth adsorption/desorption cycle. As a result, NBM has a wide range of possible uses in environmental remediation.


The husk of Newbouldia laevis is a frequent waste that must be managed properly. This paper describes the application of Newbouldia laevis husk as a value-added material for the design of a water treatment agent. The use of carbon nanotube in the modification of Newbouldia laevis husk would have a synergistic effect on the overall property of the nanocomposite. Nanocomposite synthesized from multiwalled carbon nanotubes (MWCNTs) and Newbouldia laevis husk were characterized and used for the sequestration of malachite green oxalate from contaminated water. Our primary goal is to optimize the nanocomposite by varying factors of adsorption such as solution pH, equilibrium, kinetic, thermodynamic, and regeneration studies. We believe that this study will contribute to the existing knowledge of Newbouldia laevis husk. Owing to the exceptional potential of the nanocomposite, this adsorbent can be extended to possible field applications.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Rosaniline Dyes , Thermodynamics , Water Pollutants, Chemical , Rosaniline Dyes/chemistry , Kinetics , Adsorption , Nanotubes, Carbon/chemistry , Biodegradation, Environmental , Oxalates/chemistry
19.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513184

ABSTRACT

In this study, pristine kiwi peel (KP) and nitric acid modified kiwi peel (NA-KP) based adsorbents were prepared and evaluated for selective removal of cationic dye. The morphology and chemical structure of KP and NA-KP were fully characterized and compared, and results showed nitric acid modification introduced more functional groups. Moreover, the adsorption kinetics and isotherms of malachite green (MG) by KP and NA-KP were investigated and discussed. The results showed that the adsorption process of MG onto KP followed a pseudo-second-order kinetic model and the Langmuir isotherm model, while the adsorption process of MG onto NA-KP followed a pseudo-first-order kinetic model and the Freundlich isotherm model. Notably, the Langmuir maximum adsorption capacity of NA-KP was 580.61 mg g-1, which was superior to that of KP (297.15 mg g-1). Furthermore, thermodynamic studies demonstrated the feasible, spontaneous, and endothermic nature of the adsorption process of MG by NA-KP. Importantly, NA-KP showed superior selectivity to KP towards cationic dye MG against anionic dye methyl orange (MO). When the molar ratio of MG/MO was 1:1, the separation factor (αMG/MO) of NA-KP was 698.10, which was 5.93 times of KP. In addition, hydrogen bonding, π-π interactions, and electrostatic interaction played important roles during the MG adsorption process by NA-KP. This work provided a low-cost, eco-friendly, and efficient option for the selective removal of cationic dye from dyeing wastewater.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Nitric Acid , Rosaniline Dyes/chemistry , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
20.
Mar Drugs ; 21(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37233506

ABSTRACT

Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.


Subject(s)
Diatoms , Water Pollutants, Chemical , Coloring Agents/chemistry , Rosaniline Dyes/chemistry , Congo Red , Water/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...