Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
J Ovarian Res ; 17(1): 100, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734641

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder with multiple metabolic abnormalities. Most PCOS patients have concomitant metabolic syndromes such as insulin resistance and obesity, which often lead to the development of type II diabetes and cardiovascular disease with serious consequences. Current treatment of PCOS with symptomatic treatments such as hormone replacement, which has many side effects. Research on its origin and pathogenesis is urgently needed. Although improving the metabolic status of the body can alleviate reproductive function in some patients, there is still a subset of patients with metabolically normal PCOS that lacks therapeutic tools to address ovarian etiology. METHODS: The effect of IL-22 on PCOS ovarian function was verified in a non-metabolic PCOS mouse model induced by dehydroepiandrosterone (DHEA) and rosiglitazone, as well as granulosa cell -specific STAT3 knockout (Fshrcre+Stat3f/f) mice (10 groups totally and n = 5 per group). Mice were maintained under controlled temperature and lighting conditions with free access to food and water in a specific pathogen-free (SPF) facility. Secondary follicles separated from Fshrcre+Stat3f/f mice were cultured in vitro with DHEA to mimic the hyperandrogenic environment in PCOS ovaries (4 groups and n = 7 per group) and then were treated with IL-22 to investigate the specific role of IL-22 on ovarian function. RESULTS: We developed a non-metabolic mice model with rosiglitazone superimposed on DHEA. This model has normal metabolic function as evidenced by normal glucose tolerance without insulin resistance and PCOS-like ovarian function as evidenced by irregular estrous cycle, polycystic ovarian morphology (PCOM), abnormalities in sex hormone level. Supplementation with IL-22 improved these ovarian functions in non-metabolic PCOS mice. Application of DHEA in an in vitro follicular culture system to simulate PCOS follicular developmental block and ovulation impairment. Follicles from Fshrcre+Stat3f/f did not show improvement in POCS follicle development with the addition of IL-22. In DHEA-induced PCOS mice, selective ablation of STAT3 in granulosa cells significantly reversed the ameliorative effect of IL-22 on ovarian function. CONCLUSION: IL-22 can improve non-metabolic PCOS mice ovarian function. Granulosa cells deficient in STAT3 reverses the role of IL-22 in alleviating ovary dysfunction in non-metabolic PCOS mice.


Subject(s)
Disease Models, Animal , Interleukin-22 , Interleukins , Ovary , Polycystic Ovary Syndrome , Female , Animals , Polycystic Ovary Syndrome/metabolism , Mice , Interleukins/metabolism , Interleukins/genetics , Ovary/metabolism , Ovary/pathology , Dehydroepiandrosterone/pharmacology , STAT3 Transcription Factor/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Granulosa Cells/metabolism , Mice, Knockout
2.
Pak J Pharm Sci ; 37(1): 9-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741395

ABSTRACT

Early-stage glottic laryngeal carcinoma refers to Tis-T2 lesions without cervical lymph nodes involvement and distant metastasis. Rosiglitazone facilitates expression of anti-inflammatory substances in the body, protecting immune system and improving patient's treatment efficacy and prognosis. We aimed to clarify the influence of rosiglitazone on prognosis of early-stage glottic laryngeal carcinoma. The control group received low-temperature plasma radiofrequency ablation and the observation group additionally received rosiglitazone; 4 mg, 2 times/day for 6 months. After treatment, the observation group showed reduction in the fundamental frequency perturbation and amplitude perturbation and increase in the harmonic-to-noise ratio relative to the control group. Total effective rate was 80.31% and 77.14% for observation and control groups, respectively (P > 0.05). Peripheral blood immune makers were higher in the observation group. The incidence rates of adverse reactions were lower in the observation group. The median survival time was 33 months in control group and 47 months in observation group (P < 0.05). The five-year survival rate was 77.14% in the observation group and 54.29% in the control group (P < 0.05). Rosiglitazone can prolong the survival of early-stage glottic laryngeal carcinoma patients, improving immune function and reducing adverse reactions during treatment.


Subject(s)
Laryngeal Neoplasms , Quality of Life , Rosiglitazone , Humans , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/mortality , Male , Middle Aged , Female , Prognosis , Aged , Glottis/pathology , Glottis/drug effects , Neoplasm Staging , Adult , Treatment Outcome
3.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691185

ABSTRACT

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Subject(s)
Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
4.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792097

ABSTRACT

Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system's thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor's ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma , Protein Binding , Thermodynamics , PPAR gamma/chemistry , PPAR gamma/metabolism , Rosiglitazone/chemistry , Rosiglitazone/pharmacology , Protein Conformation , Humans
5.
Anal Chim Acta ; 1309: 342666, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772654

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) belong to the superfamily of nuclear receptors and represent the targets for the therapeutical treatment of type 2 diabetes, dyslipidemia and hyperglycemia associated with metabolic syndrome. Some medicinal plants have been traditionally used to treat this kind of metabolic diseases. Today only few drugs targeting PPARs have been approved and for this reason, the rapid identification of novel ligands and/or chemical scaffolds starting from natural extracts would benefit of a selective affinity ligand fishing assay. RESULTS: In this paper we describe the development of a new ligand fishing assay based on size exclusion chromatography (SEC) coupled to LC-MS for the analysis of complex samples such as botanical extracts. The known PPARα and PPARγ ligands, WY-14643 and rosiglitazone respectively, were used for system development and evaluation. The system has found application on an Allium lusitanicum methanolic extract, containing saponins, a class of chemical compounds which have attracted interest as PPARs ligands because of their hypolipidemic and insulin-like properties. SIGNIFICANCE: A new SEC-AS-MS method has been developed for the affinity screening of PPARα and PPARγ ligands. The system proved to be highly specific and will be used to improve the throughput for the identification of new selective metabolites from natural souces targeting PPARα and PPARγ.


Subject(s)
Chromatography, Gel , PPAR alpha , PPAR gamma , Plant Extracts , PPAR gamma/metabolism , PPAR gamma/chemistry , PPAR alpha/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ligands , Mass Spectrometry , Rosiglitazone/pharmacology , Rosiglitazone/chemistry , Humans , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/analysis , Pyrimidines
6.
Cell Death Dis ; 15(5): 350, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773070

ABSTRACT

Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.


Subject(s)
Cell Differentiation , Cognitive Dysfunction , GTP-Binding Protein gamma Subunits , Myelin Sheath , Oligodendrocyte Precursor Cells , Animals , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , Mice , Oligodendrocyte Precursor Cells/metabolism , Myelin Sheath/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/genetics , Lipid Metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mice, Inbred C57BL , PPAR gamma/metabolism , PPAR gamma/genetics , Mice, Knockout , Male , Rosiglitazone/pharmacology
7.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594496

ABSTRACT

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Subject(s)
Ferroptosis , Pre-Eclampsia , Humans , Female , Pregnancy , Rats , Animals , Rosiglitazone/pharmacology , Rosiglitazone/metabolism , PPAR gamma/metabolism , Lipid Metabolism , Placenta/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Pre-Eclampsia/metabolism , NF-E2-Related Factor 2/metabolism , Hypoxia/metabolism , Lipids
8.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38661048

ABSTRACT

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Subject(s)
Adipose Tissue , Macrophages , PPAR gamma , Rosiglitazone , Transplantation, Autologous , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Macrophages/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Rosiglitazone/pharmacology , Male , Cell Differentiation , Adipogenesis , Adipocytes/metabolism , Mice , Rats
9.
Int J Biol Macromol ; 268(Pt 1): 131865, 2024 May.
Article in English | MEDLINE | ID: mdl-38670200

ABSTRACT

A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.


Subject(s)
Nuclear Receptor Coactivator 1 , PPAR gamma , Protein Binding , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , PPAR gamma/metabolism , PPAR gamma/chemistry , Ligands , Nuclear Receptor Coactivator 1/metabolism , Nuclear Receptor Coactivator 1/chemistry , Peptides/chemistry , Peptides/metabolism , Humans , Rosiglitazone/pharmacology , Nuclear Receptor Co-Repressor 2
10.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687279

ABSTRACT

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Subject(s)
Acrylic Resins , Atherosclerosis , Chondroitin Sulfates , Lipoproteins, LDL , Rosiglitazone , Animals , Mice , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/isolation & purification , Chondroitin Sulfates/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Acrylic Resins/chemistry , Rosiglitazone/pharmacology , Rosiglitazone/chemistry , Adsorption , RAW 264.7 Cells , Microspheres , Cyclodextrins/chemistry
11.
Acta Biomater ; 181: 317-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643815

ABSTRACT

Obesity represents a growing public health concern and is closely associated with metabolic complications such as diabetes and fatty liver disease. Anti-obesity medications currently available have limited efficacy in weight loss and are often accompanied by adverse effects. This study proposes a localized photothermal therapy (PTT) combined with adipocyte-targeted delivery of rosiglitazone (RSG) to address obesity. Specifically, cationic albumin nanoparticles (cNPs) were synthesized to deliver RSG precisely to white adipocytes, stimulating the browning process. An IR780-loaded thermosensitive hydrogel was injected and allowed to gel in situ to afford a subcutaneous reservoir that enables localized PTT and controlled release of RSG cNPs. Notably, cNPs significantly enhanced the internalization efficiency in adipocytes in vitro and prolonged the therapeutic retention in the adipose tissue in vivo. Co-administration of RSG cNPs and PTT substantially reduced fat content, induced browning in white adipose tissue in diet-induced obese mice, and mitigated complications such as insulin resistance, fatty liver, and hyperlipidemia. The increased expression of uncoupling protein 1 contributes to enhancing energy expenditure and facilitating adipose metabolism, thereby effectively combating obesity. This therapeutic approach integrates localized PTT with adipocyte-targeted delivery to combat the global obesity epidemic thus offering a promising solution with reduced systemic toxicity and enhanced efficacy. STATEMENT OF SIGNIFICANCE: Cationic albumin nanoparticles are capable of efficient internalization in adipocytes, which may enhance drug targeting to adipose tissue. The combination of rosiglitazone-loaded cationic albumin nanoparticles and local hyperthermia effectively reduces lipid accumulation in adipocytes and induces an upregulated expression of uncoupling protein 1. The combination therapy effectively inhibits fat accumulation, induces adipocyte browning, and regulates systemic metabolism in diet-induced obese mice.


Subject(s)
Adipocytes , Obesity , Photothermal Therapy , Rosiglitazone , Animals , Rosiglitazone/pharmacology , Mice , Obesity/pathology , Adipocytes/metabolism , Adipocytes/drug effects , Nanoparticles/chemistry , Male , Mice, Inbred C57BL , Diet, High-Fat , 3T3-L1 Cells , Drug Delivery Systems
12.
Adv Ther ; 41(6): 2168-2195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683294

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a complex endocrine condition affecting women of reproductive age. It is characterised by insulin resistance and is a risk for type 2 diabetes mellitus (T2DM). The aim of this study was to review the literature on the effect of pioglitazone and rosiglitazone in women with PCOS. METHODS: We searched PubMed, MEDLINE, Scopus, Embase, Cochrane Library and the Web of Science in April 2020 and updated in March 2023. Studies were deemed eligible if they were randomised controlled trials (RCTs) reporting the effect of pioglitazone and rosiglitazone in PCOS. The study follows the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Two reviewers independently extracted data and assessed the risk of bias using the Cochrane risk of bias tool. RESULTS: Out of 814 initially retrieved citations, 24 randomised clinical trials (RCTs) involving 976 participants were deemed eligible. Among women with PCOS, treatment with rosiglitazone compared to metformin resulted in a significant increase in the mean body weight (mean difference (MD) 1.95 kg; 95% CI 0.03-3.87, p = 0.05). Metformin treatment was associated with a reduction in mean body mass index (BMI) compared to pioglitazone (MD 0.85 kg/m2; 95% CI 0.13-1.57, p = 0.02). Both pioglitazone compared to placebo (MD 2.56 kg/m2; 95% CI 1.77-3.34, p < 0.00001) and rosiglitazone compared to metformin (MD 0.74 kg/m2; 95% CI 0.07-1.41, p = 0.03) were associated with a significant increase in BMI. Treatment with pioglitazone compared to placebo showed a significant reduction in triglycerides (MD - 0.20 mmol/L; 95% CI - 0.38 to - 0.03, p = 0.02) and fasting insulin levels (MD - 11.47 mmol/L; 95% CI - 20.20, - 2.27, p = 0.01). Rosiglitazone compared to metformin was marginally significantly associated with a reduction in the luteinising hormone (LH) (MD - 0.62; 95% CI - 1.25-0.00, p = 0.05). CONCLUSION: Both pioglitazone and rosiglitazone were associated with significant increases in body weight and BMI when compared with metformin or placebo. Pioglitazone significantly reduced triglycerides and fasting insulin when compared with placebo while rosiglitazone showed a modest reduction of LH when compared with metformin. PROSPERO REGISTRATION NO: CRD42020178783.


Subject(s)
Hypoglycemic Agents , Pioglitazone , Polycystic Ovary Syndrome , Randomized Controlled Trials as Topic , Rosiglitazone , Polycystic Ovary Syndrome/drug therapy , Humans , Female , Hypoglycemic Agents/therapeutic use , Pioglitazone/therapeutic use , Rosiglitazone/therapeutic use , Rosiglitazone/pharmacology , Thiazolidinediones/therapeutic use , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Body Mass Index
13.
Nat Metab ; 6(5): 880-898, 2024 May.
Article in English | MEDLINE | ID: mdl-38605183

ABSTRACT

The obesity epidemic continues to worsen worldwide, driving metabolic and chronic inflammatory diseases. Thiazolidinediones, such as rosiglitazone (Rosi), are PPARγ agonists that promote 'M2-like' adipose tissue macrophage (ATM) polarization and cause insulin sensitization. As ATM-derived small extracellular vesicles (ATM-sEVs) from lean mice are known to increase insulin sensitivity, we assessed the metabolic effects of ATM-sEVs from Rosi-treated obese male mice (Rosi-ATM-sEVs). Here we show that Rosi leads to improved glucose and insulin tolerance, transcriptional repolarization of ATMs and increased sEV secretion. Administration of Rosi-ATM-sEVs rescues obesity-induced glucose intolerance and insulin sensitivity in vivo without the known thiazolidinedione-induced adverse effects of weight gain or haemodilution. Rosi-ATM-sEVs directly increase insulin sensitivity in adipocytes, myotubes and primary mouse and human hepatocytes. Additionally, we demonstrate that the miRNAs within Rosi-ATM-sEVs, primarily miR-690, are responsible for these beneficial metabolic effects. Thus, using ATM-sEVs with specific miRNAs may provide a therapeutic path to induce insulin sensitization.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Insulin Resistance , Macrophages , Rosiglitazone , Animals , Rosiglitazone/pharmacology , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Male , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism , Insulin/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Mice, Inbred C57BL
14.
PLoS One ; 19(3): e0280372, 2024.
Article in English | MEDLINE | ID: mdl-38547218

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the anti-inflammatory effect of Rosiglitazone (RGZ) on lipopolysaccharide (LPS) -induced Endometritis and explore its possible mechanism. METHODS: The preventive and therapeutic effects of RGZ on Endometritis were studied in vivo and in vitro. A total of 40 female C57BL/6 mice were randomly divided into the following 4 groups: RGZ+LPS, RGZ control, LPS and DMSO control. The mice uterine tissue sections were performed with HE and immunohistochemical staining. Human endometrial stromal cells (HESCs) were cultured, and different concentrations of LPS stimulation groups and RGZ and/or a TLR4 signaling inhibitor TAK-242 pretreatment +LPS groups were established to further elucidate the underlying mechanisms of this protective effect of RGZ. RESULTS: The HE results in mice showed that RGZ+LPS group had less tissue loss than LPS group. Immunohistochemical staining (IHC) results showed that the expression of TLR4 after RGZ treatment was significantly lower than that in LPS group. These findings suggested that RGZ effectively improves the pathological changes associated with LPS-induced endometritis by inhibiting TLR4. Reverse transcription-polymerase chain reaction and western blot analysis demonstrated that RGZ pretreatment suppresses the expression of Toll-like receptor 4 (TLR4) and its downstream activation of nuclear factor-κB (NF-κB). In vitro, RGZ inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner and also downregulated LPS induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein. CONCLUSIONS: These results suggest that RGZ may inhibit LPS-induced endometritis through the TLR4-mediated NF-κB pathway.


Subject(s)
Endometritis , NF-kappa B , Female , Mice , Humans , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Endometritis/chemically induced , Endometritis/drug therapy , Toll-Like Receptor 4/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Signal Transduction , Mice, Inbred C57BL
15.
Brain Res Bull ; 209: 110918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432497

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Hypoglycemic Agents , Neuroinflammatory Diseases , Rosiglitazone , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Neuroinflammatory Diseases/drug therapy , PPAR gamma/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male
16.
Environ Pollut ; 347: 123761, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38467365

ABSTRACT

Adipose tissue compromises one of the principal depots where brominated flame retardants (BFR) accumulate in vivo, yet whether BFR disturb thermogenic brown/beige adipocytes is still not referred to date. Herein, effects of BDE-99, a major congener of polybrominated diphenyl ethers (PBDEs) detected in humans, on brown/beige adipocytes were explored for the first time, aiming to provide new knowledge evaluating the obesogenic and metabolic disrupting effects of BFR. Our results firstly demonstrated that exposure to BDE-99 during the lineage commitment period significantly promoted C3H10T1/2 MSCs differentiating into brown/beige adipocytes, evidenced by the increase of brown/beige adipocyte marker UCP1, Cidea as well as mitochondrial membrane potential and basal respiration rate, which was similar to pharmacological PPARγ agonist rosiglitazone. Unexpectedly, the mitochondrial maximal respiration rate of BDE-99 stimulated brown/beige adipocytes was not synchronously enhanced and resulted in a significant reduction of mitochondrial spare respiration capacity (SRC) compared to control or rosiglitazone stimulated adipocytes, indicating a deficient energy-dissipating capacity of BDE-99 stimulated thermogenic adipocytes. Consistently with compromised mitochondrial SRC, lipidomic analysis further revealed that the lipids profile of mitochondria derived from BDE-99 stimulated brown/beige adipocytes were quite different from control or rosiglitazone stimulated cells. In detail, BDE-99 group contains more free fatty acid (FFA) and lyso-PE in mitochondria. In addition to energy metabolism, our results also demonstrated that BDE-99 stimulated brown/beige adipocytes were deficient in endocrine, which secreted more adverse adipokine named resistin, coinciding with comparable beneficial adipokine adiponectin compared with that of rosiglitazone. Taken together, our results showed for the first time that BDE-99 stimulated brown/beige adipocytes were aberrant in energy metabolism and endocrine, which strongly suggests that BDE-99 accumulated in human adipose tissue could interfere with brown/beige adipocytes to contribute to the occurrence of obesity and relevant metabolic disorders.


Subject(s)
Adipocytes, Beige , Humans , Adipocytes, Beige/metabolism , Halogenated Diphenyl Ethers/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/metabolism , Adipocytes, Brown/metabolism , Adipokines
17.
Planta Med ; 90(5): 388-396, 2024 May.
Article in English | MEDLINE | ID: mdl-38490239

ABSTRACT

Diabetes mellitus, linked with insulin resistance and hyperglycaemia, is a leading cause of mortality. Glucose uptake through glucose transporter type 4, especially in skeletal muscle, is crucial for maintaining euglycaemia and is a key pathway targeted by antidiabetic medication. Abrus precatorius is a medicinal plant with demonstrated antihyperglycaemic activity in animal models, but its mechanisms are unclear.This study evaluated the effect of a 50% ethanolic (v/v) A. precatorius leaf extract on (1) insulin-stimulated glucose uptake and (2) related gene expression in differentiated C2C12 myotubes using rosiglitazone as a positive control, and (3) generated a comprehensive phytochemical profile of A. precatorius leaf extract using liquid chromatography-high resolution mass spectrometry to elucidate its antidiabetic compounds. A. precatorius leaf extract significantly increased insulin-stimulated glucose uptake, and insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression; however, it had no effect on glucose transporter type 4 gene expression. At 250 µg/mL A. precatorius leaf extract, the increase in glucose uptake was significantly higher than 1 µM rosiglitazone. Fifty-five phytochemicals (primarily polyphenols, triterpenoids, saponins, and alkaloids) were putatively identified, including 24 that have not previously been reported from A. precatorius leaves. Abrusin, precatorin I, glycyrrhizin, hemiphloin, isohemiphloin, hispidulin 4'-O-ß-D-glucopyranoside, homoplantaginin, and cirsimaritin were putatively identified as known major compounds previously reported from A. precatorius leaf extract. A. precatorius leaves contain antidiabetic phytochemicals and enhance insulin-stimulated glucose uptake in myotubes via the protein kinase B/phosphoinositide 3-kinase pathway by regulating insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression. Therefore, A. precatorius leaves may improve skeletal muscle insulin sensitivity and hyperglycaemia. Additionally, it is a valuable source of bioactive phytochemicals with potential therapeutic use for diabetes.


Subject(s)
Abrus , Diabetes Mellitus , Hyperglycemia , Insulin Resistance , Animals , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Abrus/chemistry , Insulin Receptor Substrate Proteins/metabolism , Rosiglitazone/metabolism , Rosiglitazone/pharmacology , Glucose Transporter Type 4 , Phosphatidylinositol 3-Kinases , Muscle, Skeletal/metabolism , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Glucose/pharmacology
18.
Clin Ther ; 46(4): 345-353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462427

ABSTRACT

PURPOSE: The bad bitter taste of some medicines is a barrier to overcoming noncompliance with medication use, especially life-saving drugs given to children and the elderly. Here, we evaluated a new class of bitter blockers (thiazolidinediones, TZDs). METHODS: In this study, 2 TZDs were tested, rosiglitazone (ROSI) and a simpler form of TZD, using a high-potency sweetener as a positive control (neohesperidin dihydrochalcone, NHDC). We tested bitter-blocking effects using the bitter drugs tenofovir alafenamide fumarate (TAF), a treatment for HIV and hepatitis B infection, and praziquantel (PRAZ), a treatment for schistosomiasis, by conducting taste testing with 2 separate taste panels: a general panel (N = 97, 20-23 years, 82.5% female, all Eastern European) and a genetically informative panel (N = 158, including 68 twin pairs, 18-82 years, 76% female, 87% European ancestry). Participants rated the bitterness intensity of the solutions on a 100-point generalized visual analog scale. FINDINGS: Person-to-person differences in drug bitterness were striking; TAF and PRAZ were weakly or not bitter for some people but moderately to highly bitter for others. Participants in both taste panels rated the bitter drugs TAF and PRAZ as less bitter on average when mixed with NHDC than when sampled alone. ROSI partially suppressed the bitterness of TAF and PRAZ, but effectiveness differed between the 2 panels: bitterness was significantly reduced for PRAZ but not TAF in the general panel and for TAF but not PRAZ in the genetically informative panel. ROSI was a more effective blocker than the other TZD. IMPLICATIONS: These results suggest that TZDs are partially effective bitter blockers and the suppression efficacy differs from drug to drug, from person to person, and from panel to panel, suggesting other TZDs should be designed and tested with more drugs and on diverse populations to define which ones work best with which drugs and for whom. The discovery of bitter receptor blockers can improve compliance with medication use.


Subject(s)
Taste , Thiazolidinediones , Humans , Female , Male , Taste/drug effects , Adult , Aged , Middle Aged , Young Adult , Adolescent , Aged, 80 and over , Thiazolidinediones/therapeutic use , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Alanine
19.
Cell Commun Signal ; 22(1): 125, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360670

ABSTRACT

The activation of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively shown to attenuate inflammatory responses in conditions such as asthma, acute lung injury, and acute respiratory distress syndrome, as demonstrated in animal studies. However, the precise molecular mechanisms underlying these inhibitory effects remain largely unknown. The upregulation of heme oxygenase-1 (HO-1) has been shown to confer protective effects, including antioxidant, antiapoptotic, and immunomodulatory effects in vitro and in vivo. PPARγ is highly expressed not only in adipose tissues but also in various other tissues, including the pulmonary system. Thiazolidinediones (TZDs) are highly selective agonists for PPARγ and are used as antihyperglycemic medications. These observations suggest that PPARγ agonists could modulate metabolism and inflammation. Several studies have indicated that PPARγ agonists may serve as potential therapeutic candidates in inflammation-related diseases by upregulating HO-1, which in turn modulates inflammatory responses. In the respiratory system, exposure to external insults triggers the expression of inflammatory molecules, such as cytokines, chemokines, adhesion molecules, matrix metalloproteinases, and reactive oxygen species, leading to the development of pulmonary inflammatory diseases. Previous studies have demonstrated that the upregulation of HO-1 protects tissues and cells from external insults, indicating that the induction of HO-1 by PPARγ agonists could exert protective effects by inhibiting inflammatory signaling pathways and attenuating the development of pulmonary inflammatory diseases. However, the mechanisms underlying TZD-induced HO-1 expression are not well understood. This review aimed to elucidate the molecular mechanisms through which PPARγ agonists induce the expression of HO-1 and explore how they protect against inflammatory and oxidative responses.


Subject(s)
Heme Oxygenase-1 , PPAR gamma , Pneumonia , Rosiglitazone , Animals , Heme Oxygenase-1/metabolism , Lung/metabolism , PPAR gamma/agonists , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Pneumonia/drug therapy
20.
J Ethnopharmacol ; 321: 117550, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38065350

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vascular endothelial cell senescence is associated with cardiovascular complications in diabetes. Essential oil from Fructus Alpiniae zerumbet (Pers.) B.L.Burtt & R.M.Sm. (EOFAZ) has potentially beneficial and promising diabetes-related vascular endothelial cell senescence-mitigating effects; however, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY: To investigate the molecular effects of EOFAZ on vascular endothelial cell senescence in diabetes. MATERIALS AND METHODS: A diabetes mouse model was developed using a high-fat and high-glucose diet (HFD) combined with intraperitoneal injection of low-dose streptozotocin (STZ, 30 mg/kg) and oral treatment with EOFAZ. 4D label-free quantitative proteomics, network pharmacology, and molecular docking techniques were employed to explore the molecular mechanisms via which EOFAZ alleviates diabetes-related vascular endothelial cell senescence. A human aortic endothelial cells (HAECs) senescence model was developed using high palmitic acid and high glucose (PA/HG) concentrations in vitro. Western blotting, immunofluorescence, SA-ß-galactosidase staining, cell cycle, reactive oxygen species (ROS), cell migration, and enzyme linked immunosorbent assays were performed to determine the protective role of EOFAZ against vascular endothelial cell senescence in diabetes. Moreover, the PPAR-γ agonist rosiglitazone, inhibitor GW9662, and siRNA were used to verify the underlying mechanism by which EOFAZ combats vascular endothelial cell senescence in diabetes. RESULTS: EOFAZ treatment ameliorated abnormal lipid metabolism, vascular histopathological damage, and vascular endothelial aging in diabetic mice. Proteomics and network pharmacology analysis revealed that the differentially expressed proteins (DEPs) and drug-disease targets were associated with the peroxisome proliferator-activated receptor gamma (PPAR-γ) signalling pathway, a key player in vascular endothelial cell senescence. Molecular docking indicated that the small-molecule compounds in EOFAZ had a high affinity for the PPAR-γ protein. Western blotting and immunofluorescence analyses confirmed the significance of DEPs and the involvement of the PPAR-γ signalling pathway. In vitro, EOFAZ and rosiglitazone treatment reversed the effects of PA/HG on the number of senescent endothelial cells, expression of senescence-related proteins, the proportion of cells in the G0/G1 phase, ROS levels, cell migration rate, and expression of pro-inflammatory factors. The protective effects of EOFAZ against vascular endothelial cell senescence in diabetes were aborted following treatment with GW9662 or PPAR-γ siRNA. CONCLUSIONS: EOFAZ ameliorates vascular endothelial cell senescence in diabetes by activating PPAR-γ signalling. The results of the present study highlight the potential beneficial and promising therapeutic effects of EOFAZ and provide a basis for its clinical application in diabetes-related vascular endothelial cell senescence.


Subject(s)
Diabetes Mellitus, Experimental , Oils, Volatile , Humans , Mice , Animals , Endothelial Cells , PPAR gamma/metabolism , Rosiglitazone/metabolism , Rosiglitazone/pharmacology , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oils, Volatile/pharmacology , Molecular Docking Simulation , Network Pharmacology , Proteomics , RNA, Small Interfering , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...