Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.230
Filter
1.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704848

ABSTRACT

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Subject(s)
Aluminum Oxide , Composite Resins , Dental Polishing , Saliva, Artificial , Silicon Compounds , Surface Properties , Composite Resins/chemistry , Dental Polishing/methods , Humans , Saliva, Artificial/chemistry , Hydrogen-Ion Concentration , Aluminum Oxide/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Materials Testing , Nanocomposites/chemistry , Citric Acid/chemistry , Saliva/enzymology , Saliva/metabolism , Saliva/chemistry , Tooth Erosion , Rubber/chemistry , Dental Materials/chemistry
2.
Int J Biol Macromol ; 268(Pt 2): 131946, 2024 May.
Article in English | MEDLINE | ID: mdl-38692545

ABSTRACT

The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.


Subject(s)
Cellulose , Elastomers , Electric Conductivity , Rubber , Wearable Electronic Devices , Elastomers/chemistry , Cellulose/chemistry , Rubber/chemistry , Humans , Nanocomposites/chemistry , Nanoparticles/chemistry , Mechanical Phenomena , Aniline Compounds/chemistry
3.
Environ Sci Technol ; 58(21): 9113-9124, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743028

ABSTRACT

The antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized quinone product 6PPD-quinone (6PPD-Q) in rubber have attracted attention due to the ecological risk that they pose. Both 6PPD and 6PPD-Q have been detected in various environments that humans cohabit. However, to date, a clear understanding of the biotransformation of 6PPD-Q and a potential biomarker for exposure in humans are lacking. To address this issue, this study presents a comprehensive analysis of the extensive biotransformation of 6PPD-Q across species, encompassing both in vitro and in vivo models. We have tentatively identified 17 biotransformation metabolites in vitro, 15 in mice in vivo, and confirmed the presence of two metabolites in human urine samples. Interestingly, different biotransformation patterns were observed across species. Through semiquantitative analysis based on peak areas, we found that almost all 6PPD-Q underwent biotransformation within 24 h of exposure in mice, primarily via hydroxylation and subsequent glucuronidation. This suggests a rapid metabolic processing of 6PPD-Q in mammals, underscoring the importance of identifying effective biomarkers for exposure. Notably, monohydroxy 6PPD-Q and 6PPD-Q-O-glucuronide were consistently the most predominant metabolites across our studies, highlighting monohydroxy 6PPD-Q as a potential key biomarker for epidemiological research. These findings represent the first comprehensive data set on 6PPD-Q biotransformation in mammalian systems, offering insights into the metabolic pathways involved and possible exposure biomarkers.


Subject(s)
Benzoquinones , Biomarkers , Biotransformation , Environmental Exposure , Environmental Pollutants , Phenylenediamines , Animals , Mice , Environmental Exposure/analysis , Phenylenediamines/blood , Phenylenediamines/metabolism , Phenylenediamines/urine , Benzoquinones/blood , Benzoquinones/metabolism , Benzoquinones/urine , Hydroxylation , Biomarkers/metabolism , Biomarkers/urine , Rubber/chemistry , Male , Young Adult , Adult , Rats , Microsomes, Liver/metabolism , Female , Environmental Pollutants/blood , Environmental Pollutants/metabolism , Environmental Pollutants/urine
4.
Sci Total Environ ; 934: 173188, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38740197

ABSTRACT

Plastic polymers are present in most aspects of routine daily life. Their increasing leakage into the environment poses a threat to environmental, animal, and human health. These polymers are often resistant to microbial degradation and are predicted to remain in the environment for tens to hundreds of years. Fungi have been shown to degrade complex polymers and are considered good candidates for bioremediation (biological pollutant reduction) of plastics. Therefore, we screened 18 selected fungal strains for their ability to degrade polyurethane (PU), polyethylene (PE), and tire rubber. As a proxy for plastic polymer mineralization, we quantified O2 consumption and CO2 production in an enclosed biodegradation system providing plastic as the sole carbon source. In contrast to most studies we demonstrated that the tested fungi attach to, and colonize the different plastic polymers without any pretreatment of the plastics and in the absence of sugars, which were suggested essential for priming the degradation process. Functional polymer groups identified by Fourier-transform infrared spectroscopy (FTIR), and changes in fungal morphology as seen in light and scanning electron microscopy (SEM) were used as indicators of fungal adaptation to growth on PU as a substrate. Thereby, SEM analysis revealed new morphological structures and deformation of the cell wall of several fungal strains when colonizing PU and utilizing this plastic polymer for cell growth. Strains of Fusarium, Penicillium, Botryotinia cinerea EN41, and Trichoderma demonstrated a high potential to degrade PU, rubber, and PE. Growing on PU, over 90 % of the O2 was consumed in <14 days with 300-500 ppm of CO2 generated in parallel. Our study highlights a high bioremediation potential of some fungal strains to efficiently degrade plastic polymers, largely dependent on plastic type.


Subject(s)
Biodegradation, Environmental , Fungi , Plastics , Rubber , Plastics/metabolism , Fungi/metabolism , Rubber/metabolism , Polyurethanes
5.
J Hazard Mater ; 472: 134461, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696959

ABSTRACT

Previous studies have indicated that tire wear particles (TWPs) leachate exposure induced serious eye injury in fish through inhibiting the thyroid peroxidase (TPO) enzyme activity. However, the main TPO inhibitors in the leachate were still unknown. In this study, we identified 2-Mercaptobenzothiazole (MBT) as the potential TPO inhibitor in the TWPs leachate through references search, model prediction based on Danish QSAR and ToxCast database, molecular docking, and in vivo assay. We further explored the toxic mechanism of MBT under environmentally relevant concentrations. The decreased eye size of zebrafish larvae was mainly caused by the decreased lens diameter and cell density in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the retina. Transcriptomics analysis demonstrated that the eye phototransduction function was significantly suppressed by inhibiting the photoreceptor cell proliferation process after MBT exposure. The altered opsin gene expression and decreased opsin protein levels were induced by weakening thyroid hormone signaling after MBT treatment. These results were comparable to those obtained from a known TPO inhibitor, methimazole. This study has identified MBT as the primary TPO inhibitor responsible for inducing eye impairment in zebrafish larvae exposed to TWPs leachate. It is crucial for reducing the toxicity of TWPs leachate in fish.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Rubber , Eye Injuries/chemically induced , Eye Injuries/pathology , Benzothiazoles , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Molecular Docking Simulation , Retina/drug effects , Larva/drug effects
6.
Int J Biol Macromol ; 270(Pt 1): 132405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754661

ABSTRACT

Eucommia ulmoides rubber (EUR) is a high-quality natural rubber resource, which can be extracted from different organs of the Eucommia ulmoides tree. In this study, EUR was isolated from the leaves, barks, and pericarps, and the structural characteristics and physicochemical properties of EUR were systematically determined. The accumulation and distribution of EUR in different tissues were assessed through in situ observations combined with cellular and subcellular scales. The preliminary analyses indicated that the variations in the physicochemical properties of EUR across different tissues were associated with its accumulation microstructure. Further analyses by SEM and TEM showed that the initial cell differentiation and fusion resulted in the formation of tubular structures without any nucleus. A limited number of rubber particles were generated within the cytoplasm, concurrent with aggregation and fusion. Eventually, rubber particles filled the entire cytoplasm, and organelles disappeared to form highly aggregated filamentous structures. In addition, the number and area of EUR-containing cells were closely related to the organization sizes of barks and leaves. This study provided valuable insights into Eucommia ulmoides histology and the rubber industry.


Subject(s)
Eucommiaceae , Hemiterpenes , Rubber , Eucommiaceae/chemistry , Hemiterpenes/chemistry , Rubber/chemistry , Rubber/metabolism , Plant Leaves/chemistry , Plant Bark/chemistry , Butadienes/metabolism , Butadienes/chemistry
7.
J Hazard Mater ; 470: 134165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574660

ABSTRACT

It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.


Subject(s)
Mice, Inbred C57BL , Spermatozoa , Testosterone , Animals , Male , Spermatozoa/drug effects , Testosterone/blood , Testis/drug effects , Testis/metabolism , Testis/pathology , Phenylenediamines/toxicity , Rubber/toxicity , Apoptosis/drug effects , Spermatogenesis/drug effects , Mice , Reproduction/drug effects , Semen Analysis
8.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636125

ABSTRACT

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Subject(s)
Oxides , Pyrolysis , Oxides/chemistry , Sulfur/chemistry , Incineration/methods , Ferric Compounds/chemistry , Gases/chemistry , Rubber/chemistry , Calcium Compounds/chemistry , Copper
9.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Article in English | MEDLINE | ID: mdl-38636755

ABSTRACT

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Latex , Regenerative Medicine , Rubber , Humans , Biocompatible Materials/chemistry , Latex/chemistry , Regenerative Medicine/methods , Rubber/chemistry , Animals , Wound Healing/drug effects
10.
Chemosphere ; 356: 141913, 2024 May.
Article in English | MEDLINE | ID: mdl-38582164

ABSTRACT

Rubber wastewater contains variable low pH with a high load of nutrients such as nitrogen, phosphorous, suspended solids, high biological oxygen demand (BOD), and chemical oxygen demand (COD). Ureolytic and biofilm-forming bacterial strains Bacillus sp. OS26, Bacillus cereus OS36, Lysinibacillus macroides ST13, and Burkholderia multivorans DF12 were isolated from rubber processing centres showed high urease activity. Microscopic analyses evaluated the structural organization of biofilm. Extracellular polymeric substances (EPS) matrix of the biofilm of the strains showed the higher abundance of polysaccharides and lipids which help in the attachment and absorption of nutrients. The functional groups of polysaccharides, proteins, and lipids present in EPS were revealed by ATR-FTIR and 1H NMR. A consortium composed of B. cereus OS36, L. macroides ST13, and B. multivorans DF12 showed the highest biofilm formation, and efficiently reduced 62% NH3, 72% total nitrogen, and 66% PO43-. This consortium also reduced 76% BOD, 61% COD, and 68% TDS. After bioremediation, the pH of the remediated wastewater increased to 11.19. To reduce the alkalinity of discharged wastewater, CaCl2 and urea were added for calcite reaction. The highest CaCO3 precipitate was obtained at 24.6 mM of CaCl2, 2% urea, and 0.0852 mM of nickel (Ni2+) as a co-factor which reduced the pH to 7.4. The elemental composition of CaCO3 precipitate was analyzed by SEM-EDX. XRD analysis of the bacterially-induced precipitate revealed a crystallinity index of 0.66. The resulting CaCO3 precipitate was used as soil stabilizer. The precipitate filled the void spaces of the treated soil, reduced the permeability by 80 times, and increased the compression by 8.56 times than untreated soil. Thus, CaCO3 precipitated by ureolytic and biofilm-forming bacterial consortium through ureolysis can be considered a promising approach for neutralization of rubber wastewater and soil stabilization.


Subject(s)
Biodegradation, Environmental , Biofilms , Calcium Carbonate , Rubber , Wastewater , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Wastewater/chemistry , Hydrogen-Ion Concentration , Soil/chemistry , Bacteria/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Urea/metabolism , Urease/metabolism
11.
Environ Int ; 187: 108677, 2024 May.
Article in English | MEDLINE | ID: mdl-38677083

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPD-Q in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.


Subject(s)
Phenylenediamines , Rubber , Animals , Phenylenediamines/toxicity , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Humans , Environmental Monitoring
12.
Int J Biol Macromol ; 268(Pt 1): 131751, 2024 May.
Article in English | MEDLINE | ID: mdl-38657917

ABSTRACT

Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.


Subject(s)
Eucommiaceae , Gene Expression Regulation, Plant , Plant Proteins , Promoter Regions, Genetic , Rubber , Transcription Factors , Eucommiaceae/genetics , Eucommiaceae/metabolism , Rubber/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Environ Toxicol Chem ; 43(6): 1332-1338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651991

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) is a widespread contaminant of emerging concern resulting from oxidation of 6PPD, which is an antidegradant substance added to tires. The recent identification of 6PPD-quinone as the cause of acute mortality in coho salmon has quickly motivated studies on 6PPD-quinone toxicity to other species. Subsequent findings have shown that 6PPD-quinone toxicity is highly species specific. Closely related species can differ widely in response to 6PPD-quinone from extremely sensitive to tolerant. Hence toxicity testing is currently the only way to establish whether a species exhibits 6PPD-quinone toxicity. We investigated the acute toxicity of 6PPD-quinone in pink salmon alevins (sac fry). This species has is the only Pacific salmon that so far has not been tested for 6PPD-quinone sensitivity. Fish were exposed in static water in eight treatments with initial concentrations ranging from 0.1 to 12.8 µg/L. Fish were observed for 48 h, and changes in concentrations of 6PPD-quinone were monitored throughout the experiment. No mortalities or substantial changes in behavior were recorded. Environ Toxicol Chem 2024;43:1332-1338. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Phenylenediamines , Salmon , Animals , Phenylenediamines/toxicity , Water Pollutants, Chemical/toxicity , Rubber/toxicity , Toxicity Tests, Acute
14.
Int J Biol Macromol ; 270(Pt 1): 131887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688795

ABSTRACT

From the perspective of rubber/glass transition, this study clarified that the impact of dextran on retarding hardening behavior and slowing starch retrogradation of Chinese Steamed Bread (CSB) depended on its molecular weight and concentration level. Guggenheim-Anderson-de Boer (GAB) model was fitted to explore critical behavior changes in rubber/glass transition of CSB. Incorporation of high molecular weight dextran enhanced the elasticity of dough and porosity of CSB, reduced the aging and hardening degree of CSB at appropriate addition levels. CSB hardness showed a growing tendency during storage, while macromolecular dextran reduced the hardness and retrogradation degree by 22.87 % and 67.53 %. Dextran with high molecular weights lowered the glass transition temperature (Tg) and improved the moisture sorption and molecular mobility of CSB under various relative humidity (RHs) conditions by providing hydrophilic sites or intermolecular space to bind water molecules. Meanwhile, it reinforced the binding between denatured gluten and gelatinized starch. Both of them devoted to starch retrogradation inhibition and stable quality maintenance of CSB. CSB is suggested to maintain stable quality at room temperature with RHs ≤33 % to prevent rubber/glass transition. This work provided theoretical guidance for fractionation application of dextran to regulate the quality and extend the shelf-life of flour products.


Subject(s)
Bread , Dextrans , Molecular Weight , Rubber , Starch , Bread/analysis , Dextrans/chemistry , Flour/analysis , Glass/chemistry , Rubber/chemistry , Starch/chemistry , Steam , Transition Temperature
15.
Sci Total Environ ; 929: 172674, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38657808

ABSTRACT

One way of recycling end-of-life tires is by shredding them to obtain crumb rubber, a microplastic material (<0.5 mm), used as infill in artificial turf sports fields or as playground flooring. There is emerging concern about the health and environmental consequences that this type of surfaces can cause. This research aims to develop an analytical methodology able to determine 11 compounds of environmental and health concern, including antiozonants such as N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine (6PPD) or N, N´-diphenyl-1,4-phenylenediamine (DPPD), and vulcanization and crosslinking agents, such as N-cyclohexylbenzothiazole-2-sulfenamide (CBS), 1,3-di-o-tolylguanidine (DTG) or hexamethoxymethylmelamine (HMMM) from tire rubber. Ultrasound assisted extraction followed by liquid chromatography coupled to tandem mass spectrometry (UAE-LC-MS/MS) is validated demonstrating suitability. The methodology is applied to monitor the target compounds in forty real crumb rubber samples of different origin including, football pitches, outdoor and indoor playgrounds, urban pavements, commercial samples, and tires. Several alternative infill materials, such as sand, cork granulates, thermoplastic elastomers and coconut fibres, are also collected and analysed. All the target analytes are identified and quantified in the crumb rubber samples. The antiozonant 6PPD is present at the highest concentrations up to 0.2 % in new synthetic fields. The tire rubber-derived chemical 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione), recently linked to acute mortality in salmons, is found in all types of crumb rubber samples attaining concentrations up to 40 µg g-1 in football pitches. The crosslinking agent HMMM is detected in most of the playing surfaces, at concentrations up to 36 µg g-1. The tested infill alternatives are free of most of the target compounds. To the best of our knowledge, this study is the largest study considering the target compounds in tire rubber particles and the first to focus on these compounds in playgrounds including the analysis of HMMM, 6PPD-quinone and DTG in crumb rubber used as an infill material.


Subject(s)
Recycling , Rubber , Environmental Monitoring/methods , Hazardous Substances/analysis , Tandem Mass Spectrometry , Environmental Pollutants/analysis
16.
Waste Manag ; 180: 36-46, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503032

ABSTRACT

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Subject(s)
Rubber , Solid Waste , Steel/chemistry , Soot , Industrial Waste/analysis , Metals , Methacrylates
17.
PLoS One ; 19(3): e0297284, 2024.
Article in English | MEDLINE | ID: mdl-38512907

ABSTRACT

Addressing the profound impact of Tapping Panel Dryness (TPD) on yield and quality in the global rubber industry, this study introduces a cutting-edge Otsu threshold segmentation technique, enhanced by Dung Beetle Optimization (DBO-Otsu). This innovative approach optimizes the segmentation threshold combination by accelerating convergence and diversifying search methodologies. Following initial segmentation, TPD severity levels are meticulously assessed using morphological characteristics, enabling precise determination of optimal thresholds for final segmentation. The efficacy of DBO-Otsu is rigorously evaluated against mainstream benchmarks like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM), and compared with six contemporary swarm intelligence algorithms. The findings reveal that DBO-Otsu substantially surpasses its counterparts in image segmentation quality and processing speed. Further empirical analysis on a dataset comprising TPD cases from level 1 to 5 underscores the algorithm's practical utility, achieving an impressive 80% accuracy in severity level identification and underscoring its potential for TPD image segmentation and recognition tasks.


Subject(s)
Hevea , Rubber , Algorithms , Image Processing, Computer-Assisted/methods
18.
Waste Manag ; 179: 44-54, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38458146

ABSTRACT

There are concerns about the potential toxicity of bitumen and recycled materials such as reclaimed asphalt pavements from end-of-life roads and crumb rubber from scrap tires used in asphalt mixtures because they contain metals that may be released into the groundwater. This study investigated the potential metal leaching of laboratory-prepared asphalt mixtures modified with polymer coated rubber (PCR) with wet and dry technology, devulcanized rubber (DVR), compared to an unmodified control mixture and a blend modified with a synthetic polymer (SBS). The objectives were to i) quantify concentrations of metals released, ii) calculate the flux rate, the cumulative mass release, and the assessment ratio for each metal, iii) verify if the metals exceeded the EPA drinking water limit, and, finally, iv) assess the source of metals release. Zinc had the highest concentration among all metals and was present in eluates from all mixtures. The cumulative zinc concentration from DVR mixture was 41% and 34% higher than the control and SBS mixtures, respectively. For PCR wet, the cumulative zinc concentration was 9% higher than the control blend and 1% lower than the SBS mix. The assessment ratio indicated that all metal concentrations would not exceed the drinking water limit, except for zinc, for which further evaluations were required. The main source of zinc may derive from aggregates. This work showed that crumb rubber might not be the only source of metal leaching, and its use in asphalt pavements does not cause a metal leaching higher than other materials.


Subject(s)
Drinking Water , Hydrocarbons , Rubber , Drinking Water/analysis , Metals , Zinc , Organic Chemicals/analysis , Polymers
19.
Sci Total Environ ; 926: 171928, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38531457

ABSTRACT

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material. To understand their fate, it is important to start with a better characterization of abiotic and biotic degradation of the elastomer material. A multi-disciplinary approach was implemented to study the photo- and thermo- degradation of non-vulcanized SBR films containing 15 w% styrene as well as their potential biodegradation by Rhodoccocus ruber and Gordonia polyisoprenivorans bacterial strains. Each ageing process leads to crosslinking reactions, much surface oxidation of the films and the production of hundreds of short chain compounds. These degradation products present a high level of unsaturation and oxidation and can be released into water to become potential substrates for microorganisms. Both strains were able to degrade from 0.2 to 1.2 % (% ThOD) of the aged SBR film after 30-day incubation while no biodegradation was observed on the pristine material. A 25-75 % decrease in the signal intensity of water extractable compounds was observed, suggesting that biomass production was linked to the consumption of low-molecular-weight degradation products. These results evidence the positive impact of abiotic degradation on the biodegradation process of styrene butadiene rubber.


Subject(s)
Butadienes , Elastomers , Rubber , Styrenes , Styrene , Water
20.
Int J Biol Macromol ; 265(Pt 2): 131046, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518945

ABSTRACT

This work aims to fabricate antibacterial natural rubber latex composites by introducing different ratios of graphene oxide (GO) and nickel oxide (NiO) nanoparticles. The nanocomposites were prepared using latex mixing and a two-roll mill process, followed by molding with a heating hydraulic press. Detailed analyses were conducted to evaluate the rheological, chemical, physical, thermal, mechanical, and electrical performance of the composites. Fourier transform infrared spectroscopy (FTIR) was employed to analyze the interaction among different components, while the surface morphology was examined through the field emission scanning electron microscopy (FESEM) technique. The composites with a loading ratio of 1:2 of GO to NiO (optimized concentration) exhibited the highest tensile strength (24.9 MPa) and tear strength (47.4 N/ mm) among all the tested samples. In addition, the composites demonstrated notable antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The thermal stability of the composites was observed up to 315 °C, and their electrical resistivity lies in the insulating range across a temperature span of 25 °C to 50 °C. The research uncovers critical insights into advancing composite materials suitable for diverse applications, featuring inherent antibacterial attributes, robust mechanical properties, resilience to solvent, UV shielding properties, and controlled electrical resistivity capabilities.


Subject(s)
Graphite , Nanoparticles , Nickel , Rubber , Rubber/chemistry , Latex/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...