Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Genes (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927590

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is a rare genetic disorder characterized by intellectual disability, facial dysmorphisms, and enlarged thumbs and halluces. Approximately 55% of RTS cases result from pathogenic variants in the CREBBP gene, with an additional 8% linked to the EP300 gene. Given the close relationship between these two genes and their involvement in epigenomic modulation, RTS is grouped into chromatinopathies. The extensive clinical heterogeneity observed in RTS, coupled with the growing number of disorders involving the epigenetic machinery, poses a challenge to a phenotype-based diagnostic approach for these conditions. Here, we describe the first case of a patient clinically diagnosed with RTS with a CREBBP truncating variant in mosaic form. We also review previously described cases of mosaicism in CREBBP and apply clinical diagnostic guidelines to these patients, confirming the good specificity of the consensus. Nonetheless, these reports raise questions about the potential underdiagnosis of milder cases of RTS. The application of a targeted phenotype-based approach, coupled with high-depth NGS, may enhance the diagnostic yield of whole-exome sequencing (WES) in mild and mosaic conditions.


Subject(s)
CREB-Binding Protein , Mosaicism , Mutation , Phenotype , Rubinstein-Taybi Syndrome , Female , Humans , Male , CREB-Binding Protein/genetics , Exome Sequencing/methods , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
2.
Stem Cell Res ; 78: 103456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820863

ABSTRACT

Rubinstein Taybi Syndrome (RSTS) is a rare genetic disorder which is caused by mutations in either CREBBP or EP300. RSTS with mutations in CREBBP is known as RSTS-1. We have generated an induced pluripotent stem cell (iPSC) line, IGIBi018-A from an Indian RSTS-patient using the episomal reprogramming method. The CREBBP gene in the patient harbours a nonsense mutation at position NM_004380.3(c.6876 del C). IGIBi018-A iPSC showed expression of pluripotent stem cell markers, has a normal karyotype and could be differentiated into three germ layers. This iPSC line will help to explore the role of CREBBP in RSTS associated developmental defects.


Subject(s)
Induced Pluripotent Stem Cells , Rubinstein-Taybi Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/pathology , Cell Line , Cell Differentiation , India , Male , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism
3.
Hum Genet ; 143(6): 747-759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753158

ABSTRACT

Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.


Subject(s)
Exome Sequencing , Histone Deacetylase 2 , Humans , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Acetylation , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Chromatin/genetics , Chromatin/metabolism , Male , Female , Mutation , Frameshift Mutation , Cell Line
4.
J Gene Med ; 26(1): e3591, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37721116

ABSTRACT

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Subject(s)
Intellectual Disability , Rhabdomyolysis , Rubinstein-Taybi Syndrome , Humans , CREB-Binding Protein/genetics , CREB-Binding Protein/chemistry , Intellectual Disability/genetics , Mutation , Mutation, Missense , Phenotype , Rhabdomyolysis/genetics , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
5.
Ital J Dermatol Venerol ; 158(4): 316-320, 2023 08.
Article in English | MEDLINE | ID: mdl-37282850

ABSTRACT

Rubinstein-Taybi Syndrome is a rare congenital multisystem syndrome inherited in an autosomal dominant pattern caused by mutations in CREBBP and EP300 genes in approximately 60% and 10% respectively. These genes encode two highly evolutionarily conserved, ubiquitously expressed, and homologous lysine-acetyltransferases, that are involved in number of basic cellular activities, such as DNA repair, cell proliferation, growth, differentiation, apoptosis of cells, and tumor suppression. It is mainly characterized by global developmental delay, moderate to severe intellectual disability, postnatal retardation, microcephaly, skeletal anomalies including broad/short, angled thumbs and/or large first toes, short stature, and dysmorphic facial features. There is an increased risk to develop tumors mainly meningiomas and pilomatrixomas, without a clear genotype-phenotype correlation. Although not considered as characteristic manifestations, numerous cutaneous anomalies have also been reported in patients with this entity. Both susceptibility to the formation of keloids and pilomatricomas are the most often associated cutaneous features. In this review, we discuss the genetics, diagnosis, and clinical features in Rubinstein-Taybi Syndrome with a review of the major dermatological manifestations.


Subject(s)
Intellectual Disability , Pilomatrixoma , Rubinstein-Taybi Syndrome , Skin Neoplasms , Humans , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology , Mutation , Genetic Association Studies , Skin Neoplasms/genetics
6.
BMC Med Genomics ; 16(1): 24, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797748

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is an extremely rare autosomal dominant inheritable disorder caused by CREBBP and EP300 mutations, while atypical RSTS harbouring variant from the same genes but not obvious resembling RSTS. There are only a few cases of Menke-Hennekam syndrome (MKHK) with variant of exon 30 or 31 of CREBBP or EP300 gene have been reported that not resembling RSTS recent years. Atypical RSTS cannot be accurately classified as MKHK, nor is it easy to identify the obvious classic characteristics of RSTS. The clinical manifestations and genetic variation of atypical RSTS are not fully understood. CASE PRESENTATION: We present a Chinese core family with a girl had recurrent respiratory tract infection and developmental delay. The patient with language and motor mild development retardation, she has slight abnormal facial features, mild hirsutism and post-axial hexadactylia of left foot. Her cisterna magna is enlarged to connect with the fourth ventricle, and the ventricular system is enlarged. She has a malacia beside the posterior horn of the left lateral ventricle. The patient has primary low immunoglobulin G and A, but her level of immunoglobulin M content in blood is normal. The patient harbors a novel heterozygous frameshift variant of c.2499dupG in exon 14 of EP300 gene, that it is proved to de novo origin. The mutation is judged to be a pathogenic mutation, and it has high-grade pathogenic evidence. CONCLUSION: The clinical and genetic evaluation of this case corroborates that clinical features caused by c.2499dupG in exon 14 of EP300 are less marked than RSTS2 patient although it is difficult to establish an accurate genotype-phenotype correlation. Our additional case also helps to deepen the clinical and genetic spectrum in this disorder. The case provides a novel mutation of EP300 and enriches the phenotypes related with the gene. We have contributed new variation and disease information for guardians and doctors to broaden the knowledge about EP300-RSTS genotype and phenotype, this may contribute to ameliorate the health management of patients and improve the genetic counseling to the families.


Subject(s)
Rubinstein-Taybi Syndrome , Humans , Female , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , East Asian People , CREB-Binding Protein/genetics , Mutation , Genotype , Phenotype , E1A-Associated p300 Protein/genetics
7.
Nat Commun ; 13(1): 7002, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385105

ABSTRACT

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Subject(s)
CREB-Binding Protein , Heat-Shock Proteins , Neurodevelopmental Disorders , Rubinstein-Taybi Syndrome , Transcription Factors , Humans , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Histones/genetics , Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism
8.
Pediatr Hematol Oncol ; 39(8): 747-754, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35275800

ABSTRACT

Rubinstein-Taybi syndrome (RSTS) is a rare disorder characterized by developmental delay, short stature, dysmorphic facies and skeletal abnormalities. RSTS has been linked to a variety of malignant and benign tumors, but the frequency and characteristics of RSTS-related neoplasms remain unclear. We describe a unique case of near haploid B-cell lymphoblastic leukemia (B-ALL) in a 6-year-old girl with RSTS who harbors a likely pathogenic variant in CREBBP. Somatic CREBBP variants are enriched in some subsets of ALL; however, germline variants have not been previously described in childhood leukemia and may represent an underrecognized predisposition to malignancy. Our patient's disease responded poorly to conventional chemotherapy and relapsed following a complete remission achieved with CD19 CAR T cell therapy. We propose that the constitutional CREBBP variant may have played a significant role in the leukemia's resistance to chemotherapy and this patient's poor response to therapy.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Rubinstein-Taybi Syndrome , CREB-Binding Protein/genetics , Child , Chromosome Aberrations , Female , Genotype , Haploidy , Humans , Mutation , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology
9.
Am J Med Genet A ; 188(2): 446-453, 2022 02.
Article in English | MEDLINE | ID: mdl-34652060

ABSTRACT

Menke-Hennekam syndrome-1 (MKHK1) is a congenital disorder caused by the heterozygous variants in exon 30 or 31 of CREBBP (CREB binding protein) gene mapped on 16p13.3. It is characterized by psychomotor delay, variable impairment of intellectual disability (ID), feeding difficulty, autistic behavior, hearing impairment, short stature, microcephaly, and facial dysmorphisms. The CREBBP loss-of-function variants cause Rubinstein-Taybi syndrome-1 (RSTS1). The function of CREBBP leading to MKHK1 has not been clarified so far, and the phenotype of MKHK1 significantly differs from that of RSTS1. We examined six patients with de novo pathogenic variants affecting the last exon of CREBBP, and they shared the clinical features of MKHK1. This study revealed that one frameshift and three nonsense variants of CREBBP cause MKHK1, and inferred that the nonsense variants of the last exon could further help in the elucidation of the etiology of MKHK1.


Subject(s)
Rubinstein-Taybi Syndrome , CREB-Binding Protein/genetics , Exons/genetics , Genetic Association Studies , Humans , Japan , Phenotype , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology
10.
Genes (Basel) ; 12(7)2021 06 24.
Article in English | MEDLINE | ID: mdl-34202860

ABSTRACT

The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.


Subject(s)
Developmental Disabilities/genetics , Epigenesis, Genetic/genetics , Rubinstein-Taybi Syndrome/genetics , Developmental Disabilities/pathology , Extremities/physiopathology , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/physiopathology , Mutation/genetics , Phenotype , Rubinstein-Taybi Syndrome/pathology
11.
Am J Med Genet A ; 185(4): 1251-1255, 2021 04.
Article in English | MEDLINE | ID: mdl-33442921

ABSTRACT

Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant genetic syndrome characterized by distinct facial features, broad thumbs, growth restriction, microcephaly, intellectual disability, and developmental delay. Pathogenic variants in both CREBBP and EP300 have been associated with RSTS. Here we present a case of a female with hyperinsulinism and features consistent with RSTS, found to have a pathogenic variant in EP300. While there have been a few rare case reports of hyperinsulinism in RSTS, we suggest that hyperinsulinism might be a more prominent feature in EP300 variant RSTS than previously recognized.


Subject(s)
E1A-Associated p300 Protein/genetics , Genetic Predisposition to Disease , Hyperinsulinism/genetics , Rubinstein-Taybi Syndrome/genetics , Female , Genetic Variation/genetics , Genotype , Humans , Hyperinsulinism/pathology , Infant , Infant, Newborn , Mutation/genetics , Phenotype , Rubinstein-Taybi Syndrome/pathology , Sequence Deletion/genetics
12.
Protein J ; 40(1): 19-27, 2021 02.
Article in English | MEDLINE | ID: mdl-33394237

ABSTRACT

CBP [cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-binding protein] is one of the most researched proteins for its therapeutic function. Several studies have identified its vast functions and interactions with other transcription factors to initiate cellular signals of survival. In cancer and other diseases such as Alzheimer's, Rubinstein-taybi syndrome, and inflammatory diseases, CBP has been implicated and hence an attractive target in drug design and development. In this review, we explore the various computational techniques that have been used in CBP research, furthermore we identified computational gaps that could be explored to facilitate the development of highly therapeutic CBP inhibitors.


Subject(s)
Alzheimer Disease/drug therapy , Antineoplastic Agents/therapeutic use , CREB-Binding Protein/antagonists & inhibitors , Neoplasms/drug therapy , Neuroprotective Agents/therapeutic use , Rubinstein-Taybi Syndrome/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Antineoplastic Agents/chemistry , Binding Sites , CREB-Binding Protein/chemistry , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neuroprotective Agents/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Structure, Secondary , Response Elements , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/pathology
13.
J Mol Neurosci ; 71(3): 607-612, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32839936

ABSTRACT

Loss-of-function variants in CREBBP or EP300 result in Rubinstein-Taybi syndrome (RSTS). The previously reported cluster of variants in the last part of exon 30 and the beginning of exon 31 of CREBBP, overlapping with the ZNF2 (zinc finger, ZZ-type; residues 1701 to 1744) and ZNF3 (zinc finger, TAZ-type; residues 1764 to 1853) domains, is associated with atypical RSTS. The main features include developmental delay, short stature, microcephaly, distinctive facial features, autistic behavior, feeding difficulties, recurrent upper airway infections, and hearing impairment. Here, we report a 2-year-7-month-old Chinese girl presenting mild cognitive impairments, developmental delay, short stature, recurrent upper airway infections, and facial dysmorphism that resembled the phenotypes of previously reported atypical RSTS patients. The characteristic facial and limb dysmorphism for RSTS was absent in our patient. In addition, our patient exhibited novel phenotypes including attention deficit hyperactivity disorder (ADHD), sleep problem, and abnormal walking posture. Whole-exome sequencing (WES) identified a novel de novo in-frame deletion variant in the beginning of exon 30 of CREBBP (NM_004380:c.4897_4899delTTC, p.Phe1633del) in the HAT domain where no pathogenic variants have been previously reported to be responsible for atypical RSTS. Our case allows us to more accurately define the borders of the CREBBP coding sequence resulting in atypical RSTS, which are extended to the beginning of exon 30 (residue 1633) at the 5' end of CREBBP in the HAT domain, and reveals novel phenotypes observed in our atypical Chinese RSTS patient.


Subject(s)
CREB-Binding Protein/genetics , Phenotype , Rubinstein-Taybi Syndrome/genetics , Child, Preschool , Female , Gene Deletion , Humans , Rubinstein-Taybi Syndrome/pathology
14.
Am J Med Genet A ; 185(1): 267-273, 2021 01.
Article in English | MEDLINE | ID: mdl-33063428

ABSTRACT

Rubinstein-Taybi syndrome (RSTS, OMIM*180849) is a rare autosomal dominant disorder, characterized by distinctive facial features, short stature, broad and often angulated thumbs and halluces, with occasional congenital anomalies. Characteristic facial dysmorphic features include downslanting palpebral fissures, low hanging columella. RSTS is caused by pathogenic variants in two ubiquitously expressed and highly homologous genes, CREBBP (OMIM*600140) and EP300 (OMIM*600140). Clinical features were well reported especially in Caucasian ethnicity. We would like to report the clinical phenotype of RSTS in our Chinese population and highlight four novel mutations in CREBBP gene.


Subject(s)
CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Genetic Predisposition to Disease , Rubinstein-Taybi Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , China/epidemiology , Female , Frameshift Mutation/genetics , Humans , Infant , Male , Middle Aged , Mutation, Missense/genetics , Phenotype , Rubinstein-Taybi Syndrome/epidemiology , Rubinstein-Taybi Syndrome/pathology , Young Adult
15.
Eur J Hum Genet ; 29(1): 88-98, 2021 01.
Article in English | MEDLINE | ID: mdl-32641752

ABSTRACT

Lysine-specific methyltransferase 2A (KMT2A) is responsible for methylation of histone H3 (K4H3me) and contributes to chromatin remodeling, acting as "writer" of the epigenetic machinery. Mutations in KMT2A were first reported in Wiedemann-Steiner syndrome (WDSTS). More recently, KMT2A variants have been described in probands with a specific clinical diagnosis comprised in the so-called chromatinopathies. Such conditions, including WDSTS, are a group of overlapping disorders caused by mutations in genes coding for the epigenetic machinery. Among them, Rubinstein-Taybi syndrome (RSTS) is mainly caused by heterozygous pathogenic variants in CREBBP or EP300. In this work, we used next generation sequencing (either by custom-made panel or by whole exome) to identify alternative causative genes in individuals with a RSTS-like phenotype negative to CREBBP and EP300 mutational screening. In six patients we identified different novel unreported variants in KMT2A gene. The identified variants are de novo in at least four out of six tested individuals and all of them display some typical RSTS phenotypic features but also WDSTS specific signs. This study reinforces the concept that germline variants affecting the epigenetic machinery lead to a shared molecular effect (alteration of the chromatin state) determining superimposable clinical conditions.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Phenotype , Rubinstein-Taybi Syndrome/genetics , Adolescent , Adult , Child , Female , Humans , Male , Mutation , Rubinstein-Taybi Syndrome/pathology
16.
Am J Med Genet A ; 182(12): 2926-2938, 2020 12.
Article in English | MEDLINE | ID: mdl-33043588

ABSTRACT

Pathogenic variants in the homologous and highly conserved genes-CREBBP and EP300-are causal for Rubinstein-Taybi syndrome (RSTS). CREBBP and EP300 encode histone acetyltransferases (HAT) that act as transcriptional co-activators, and their haploinsufficiency causes the pathology characteristic of RSTS by interfering with global transcriptional regulation. Though generally a well-characterized syndrome, there is a clear phenotypic spectrum; rare associations have emerged with increasing diagnosis that is critical for comprehensive understanding of this rare syndrome. We present 12 unreported patients with RSTS found to have EP300 variants discovered through gene sequencing and chromosomal microarray. Our cohort highlights rare phenotypic features associated with EP300 variants, including imperforate anus, retained fetal finger pads, and spina bifida occulta. Our findings support the previously noted prevalence of pregnancy-related hypertension/preeclampsia seen with this disease. We additionally performed a meta-analysis on our newly reported 12 patients and 62 of the 90 previously reported patients. We demonstrated no statistically significant correlation between phenotype severity (within the domains of intellectual disability and major organ involvement, as defined in our Methods section) and variant location and type; this is in contrast to the conclusions of some smaller studies and highlights the importance of large patient cohorts in characterization of this rare disease.


Subject(s)
E1A-Associated p300 Protein/genetics , Mutation , Rubinstein-Taybi Syndrome/pathology , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Humans , Infant , Male , Prognosis , Rubinstein-Taybi Syndrome/genetics
17.
Am J Med Genet A ; 182(12): 2939-2950, 2020 12.
Article in English | MEDLINE | ID: mdl-32985117

ABSTRACT

Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant disorder, caused by loss-of-function variants in CREBBP or EP300. Affected individuals present with distinctive craniofacial features, broad thumbs and/or halluces, and intellectual disability. RSTS phenotype has been well characterized in individuals of European descent but not in other populations. In this study, individuals from diverse populations with RSTS were assessed by clinical examination and facial analysis technology. Clinical data of 38 individuals from 14 different countries were analyzed. The median age was 7 years (age range: 7 months to 47 years), and 63% were females. The most common phenotypic features in all population groups included broad thumbs and/or halluces in 97%, convex nasal ridge in 94%, and arched eyebrows in 92%. Face images of 87 individuals with RSTS (age range: 2 months to 47 years) were collected for evaluation using facial analysis technology. We compared images from 82 individuals with RSTS against 82 age- and sex-matched controls and obtained an area under the receiver operating characteristic curve (AUC) of 0.99 (p < .001), demonstrating excellent discrimination efficacy. The discrimination was, however, poor in the African group (AUC: 0.79; p = .145). Individuals with EP300 variants were more effectively discriminated (AUC: 0.95) compared with those with CREBBP variants (AUC: 0.93). This study shows that clinical examination combined with facial analysis technology may enable earlier and improved diagnosis of RSTS in diverse populations.


Subject(s)
E1A-Associated p300 Protein/genetics , Ethnicity/genetics , Face/abnormalities , Genetics, Population , Mutation , Rubinstein-Taybi Syndrome/epidemiology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Humans , Infant , International Agencies , Male , Middle Aged , Prognosis , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Young Adult
18.
Mol Neurobiol ; 57(9): 3685-3701, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562237

ABSTRACT

Rubinstein-Taybi syndrome (RSTS) is a rare multisystem developmental disorder with moderate to severe intellectual disability caused by heterozygous mutations of either CREBBP or EP300 genes encoding CBP/p300 chromatin regulators. We explored the gene programs and processes underlying the morphological and functional alterations shown by iPSC-derived neurons modeling RSTS to bridge the molecular changes resulting from defective CBP/p300 to cognitive impairment. By global transcriptome analysis, we compared the differentially expressed genes (DEGs) marking the transition from iPSC-derived neural progenitors to cortical neurons (iNeurons) of five RSTS patients carrying private CREBBP/EP300 mutations and manifesting differently graded neurocognitive signs with those of four healthy controls. Our data shows a defective and altered neuroprogenitor to neuron transcriptional program in the cells from RSTS patients. First, transcriptional regulation is weaker in RSTS as less genes than in controls are modulated, including genes of key processes of mature functional neurons, such as those for voltage-gated channels and neurotransmitters and their receptors. Second, regulation is subverted as genes acting at pre-terminal stages of neural differentiation in cell polarity and adhesive functions (members of the cadherin family) and axon extension/guidance (members of the semaphorins and SLIT receptors families) are improperly upregulated. Impairment or delay of RSTS neuronal differentiation program is also evidenced by decreased modulation of the overall number of neural differentiation markers, significantly impacting the initial and final stages of the differentiation cascade. Last, extensive downregulation of genes for RNA/DNA metabolic processes confirms that RSTS is a global transcription disorder, consistent with a syndrome driven by chromatin dysregulation. Interestingly, the morphological and functional alterations we have previously appointed as biomarkers of RSTS iNeurons provide functional support to the herein designed transcriptome profile pointing to key dysregulated neuronal genes as main contributors to patients' cognitive deficit. The impact of RSTS transcriptome may go beyond RSTS as comparison of dysregulated genes across modeled neurodevelopmental disorders could unveil convergent genes of cognitive impairment.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Induced Pluripotent Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Animals , Biomarkers/metabolism , Case-Control Studies , Cell Line , Cerebral Cortex/pathology , Gene Expression Regulation , Gene Ontology , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Biological , Tissue Donors
19.
Carcinogenesis ; 41(3): 257-266, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31504229

ABSTRACT

Rubinstein-Taybi syndrome (RSTS) is an autosomal-dominant disorder characterized by intellectual disability, skeletal abnormalities, growth deficiency and an increased risk of tumors. RSTS is predominantly caused by mutations in CREBBP or EP300 genes encoding for CBP and p300 proteins, two lysine acetyl-transferases (KAT) playing a key role in transcription, cell proliferation and DNA repair. However, the efficiency of these processes in RSTS cells is still largely unknown. Here, we have investigated whether pathways involved in the maintenance of genome stability are affected in lymphoblastoid cell lines (LCLs) obtained from RSTS patients with mutations in CREBBP or in EP300 genes. We report that RSTS LCLs with mutations affecting CBP or p300 protein levels or KAT activity, are more sensitive to oxidative DNA damage and exhibit defective base excision repair (BER). We have found reduced OGG1 DNA glycosylase activity in RSTS compared to control cell extracts, and concomitant lower OGG1 acetylation levels, thereby impairing the initiation of the BER process. In addition, we report reduced acetylation of other BER factors, such as DNA polymerase ß and Proliferating Cell Nuclear Antigen (PCNA), together with acetylation of histone H3. We also show that complementation of CBP or p300 partially reversed RSTS cell sensitivity to DNA damage. These results disclose a mechanism of defective DNA repair as a source of genome instability in RSTS cells.


Subject(s)
CREB-Binding Protein/genetics , DNA Glycosylases/genetics , E1A-Associated p300 Protein/genetics , Rubinstein-Taybi Syndrome/genetics , Acetylation , Carcinogenesis/genetics , Cell Line, Tumor , DNA Damage/genetics , DNA Repair/genetics , Humans , Mutation , Oxidative Stress/genetics , Phenotype , Rubinstein-Taybi Syndrome/pathology
20.
Mol Genet Genomic Med ; 7(11): e972, 2019 11.
Article in English | MEDLINE | ID: mdl-31566936

ABSTRACT

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare congenital disorder characterized by broad thumbs and halluces, intellectual disability, distinctive facial features, and growth retardation. Clinical manifestations of RSTS are varied and overlap with other syndromes' phenotype, which makes clinical diagnosis challenging. CREBBP is the major causative gene (55%-60% of the cases), whereas pathogenic variants found in EP300 represent the molecular cause in 8% of RSTS patients. A wide range of CREBBP pathogenic variants have been reported so far, including point mutations (30%-50%) and large deletions (10%). METHODS: The aim of this study was to characterize the CREBBP genetic variant spectrum in 39 RSTS patients using Multiplex Ligation-dependent Probe Amplification and DNA sequencing techniques (Sanger and Trio-based whole-exome sequencing). RESULTS: We identified 15 intragenic deletions/duplications, ranging from one exon to the entire gene. As a whole, 25 de novo point variants were detected: 4 missense, 12 nonsense, 5 frameshift, and 4 splicing pathogenic variants. Three of them were classified as of uncertain significance and one of the patients carried two different variants. CONCLUSION: Seventeen of the 40 genetic variants detected were reported for the first time in this work contributing, thus, to expand the molecular knowledge of this complex disorder.


Subject(s)
CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Genetic Association Studies , Mutation , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Genotype , Humans , Infant , Male , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...