Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 131986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697423

ABSTRACT

D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.


Subject(s)
Enzyme Stability , Protein Engineering , Ruminococcus , Ruminococcus/enzymology , Ruminococcus/genetics , Protein Engineering/methods , Peptides/chemistry , Peptides/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Kinetics , Models, Molecular , Fructose/metabolism , Fructose/chemistry
2.
J Affect Disord ; 357: 171-178, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38703912

ABSTRACT

BACKGROUND: Guillain-Barré Syndrome (GBS) is an autoimmune disease that typically develops after a previous gastrointestinal (GI) infection. However, the exact association between Gut Microbiota (GM) and GBS still remains unknown due to various challenges. This study aimed to investigate the potential causal association between GM and GBS by using a two-sample Mendelian Randomization (TSMR) analysis. METHODS: Utilizing the largest available genome-wide association study (GWAS) meta-analysis from the MiBioGen consortium (n = 13,266) as a foundation, we conducted a TSMR to decipher the causal relationship between GM and GBS. Various analytical methods were employed, including the inverse variance weighted (IVW), MR-PRESSO, MR-Egger, and weighted median. The heterogeneity of instrumental variables (IVs) was assessed using Cochran's Q statistics. RESULTS: The analysis identified three microbial taxa with a significantly increased risk association for GBS, including Ruminococcus gnavus group (OR = 1.40, 95 % CI: 1.07-1.83), Ruminococcus gauvreauii group (OR = 1.51, 95 % CI: 1.02-2.25), and Ruminococcaceae UCG009 (OR = 1.42, 95 % CI: 1.02-1.97), while Eubacterium brachy group (OR = 1.44, 95 % CI: 1.10-1.87) and Romboutsia (OR = 1.67, 95 % CI: 1.12-2.47) showed a suggestively causal association. On the other hand, Ruminococcaceae UCG004 (OR = 0.61, 95 % CI: 0.41-0.91) had a protective effect on GBS, while Bacilli (OR = 0.60, 95 % CI: 0.38-0.96), Gamma proteobacteria (OR = 0.63, 95 % CI: 0.41-0.98) and Lachnospiraceae UCG001 (OR = 0.69, 95 % CI: 0.49-0.96) showed a suggestively protective association for GBS. CONCLUSION: The MR analysis suggests a potential causal relationship between specific GM taxa and the risk of GBS. However, further extensive research involving diversified populations is imperative to validate these findings.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Guillain-Barre Syndrome , Mendelian Randomization Analysis , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/microbiology , Humans , Gastrointestinal Microbiome/genetics , Ruminococcus/genetics , Risk Factors
3.
Gut Microbes ; 16(1): 2342497, 2024.
Article in English | MEDLINE | ID: mdl-38635321

ABSTRACT

Despite the potential protective role of the gut microbiome against COVID-19, specific microbes conferring resistance to COVID-19 have not yet been identified. In this work, we aimed to identify and validate gut microbes at the species level that provide protection against SARS-CoV-2 infection. To identify gut microbes conferring protection against COVID-19, we conducted a fecal microbiota transplantation (FMT) from an individual with no history of COVID-19 infection or immunization into a lethal COVID-19 hamster model. FMT from this COVID-19-resistant donor resulted in significant phenotypic changes related to COVID-19 sensitivity in the hamsters. Metagenomic analysis revealed distinct differences in the gut microbiome composition among the hamster groups, leading to the identification of two previously unknown bacterial species: Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, both associated with COVID-19 resistance. Subsequently, we conducted a proof-of-concept confirmation animal experiment adhering to Koch's postulates. Oral administration of this gut microbe pair, Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, to the hamsters provided complete protection against SARS-CoV-2 infection through the activation of CD8+ T cell mediated immunity. The prophylactic efficacy of the gut microbe pair against SARS-CoV-2 infection was comparable to, or even superior to, current mRNA vaccines. This strong prophylactic efficacy suggests that the gut microbe pair could be developed as a host-directed universal vaccine for all betacoronaviruses, including potential future emerging viruses.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Animals , Cricetinae , Ruminococcus , SARS-CoV-2 , Clostridiales , CD8-Positive T-Lymphocytes , Immunity, Cellular
4.
Science ; 383(6688): eadj9223, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484069

ABSTRACT

Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.


Subject(s)
Cellulose , Dietary Fiber , Gastrointestinal Microbiome , Ruminococcus , Humans , Cellulose/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Ruminococcus/classification , Ruminococcus/enzymology , Ruminococcus/genetics , Dietary Fiber/metabolism , Phylogeny , Industrial Development
5.
J Hazard Mater ; 469: 133920, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38457972

ABSTRACT

Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Gastrointestinal Microbiome , Sulfonic Acids , Child , Female , Pregnancy , Humans , Dysbiosis/chemically induced , Ruminococcus , Fluorocarbons/toxicity , Environmental Pollutants/toxicity
6.
J Microbiol Biotechnol ; 34(3): 547-561, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38346799

ABSTRACT

In this study, we aim to investigate the precise alterations in the gut microbiota during the onset and advancement of diabetic nephropathy (DN) and examine the impact of Ruminococcus gnavus (R. gnavus) on DN. Eight-week-old male KK-Ay mice were administered antibiotic cocktails for a duration of two weeks, followed by oral administration of R. gnavus for an additional eight weeks. Our study revealed significant changes in the gut microbiota during both the initiation and progression of DN. Specifically, we observed a notable increase in the abundance of Clostridia at the class level, higher levels of Lachnospirales and Oscillospirales at the order level, and a marked decrease in Clostridia_UCG-014 in DN group. Additionally, there was a significant increase in the abundance of Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Moreover, oral administration of R. gnavus effectively aggravated kidney pathology in DN mice, accompanied by elevated levels of urea nitrogen (UN), creatinine (Cr), and urine protein. Furthermore, R. gnavus administration resulted in down-regulation of tight junction proteins such as Claudin-1, Occludin, and ZO-1, as well as increased levels of uremic toxins in urine and serum samples. Additionally, our study demonstrated that orally administered R. gnavus up-regulated the expression of inflammatory factors, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) and Interleukin (IL)-6. These changes indicated the involvement of the gut-kidney axis in DN, and R. gnavus may worsen diabetic nephropathy by affecting uremic toxin levels and promoting inflammation in DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Gastrointestinal Microbiome , Mice , Male , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Ruminococcus/metabolism , Clostridiales
7.
Eur Urol ; 85(5): 417-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38184414

ABSTRACT

Neoadjuvant pembrolizumab has been shown to be a valid treatment for patients affected by muscle-invasive bladder cancer (MIBC), as demonstrated in the PURE-01 clinical trial (NCT02736266). Among the tumor-extrinsic factors influencing immunotherapy efficacy, extensive data highlighted that the microbiome is a central player in immune-mediated anticancer activity. This report aimed to investigate the composition and role of stool microbiome in patients enrolled in the PURE-01 clinical trial. An orthotopic animal model of bladder cancer (MB49-Luc) was used to support some of the findings from human data. An analysis of stool microbiome before pembrolizumab was conducted for 42 patients, of whom 23 showed a pathologic response. The information in the preclinical model of orthotopic bladder cancer treated with anti-PD-1 antibody or control isotype was validated. Linear discriminant analysis effect size and linear models were used to identify the bacterial taxa enriched in either responders or nonresponders. The identified taxa were also tested for their association with event-free survival (EFS). Survival at 31 d after tumor instillation was used as the study endpoint in the preclinical model. Responders and nonresponders emerged to differ in terms of enrichment for 16 bacterial taxa. Of these, the genus Sutterella was enriched in responders, while the species Ruminococcus bromii was enriched in nonresponders. The negative impact of R. bromii on anti-PD-1 antibody activity was also observed in the preclinical model. EFS and survival of the preclinical model showed a negative role of R. bromii. We found different stool bacterial taxa associated with the response or lack of response to neoadjuvant pembrolizumab. Moreover, we provided experimental data about the negative role of R. bromii on immunotherapy response. Further studies are needed to externally validate our findings and provide mechanistic insights about the host-pathogen interactions in MIBC. PATIENT SUMMARY: Using prepembrolizumab stool samples collected from patients enrolled in the PURE-01 clinical trials, we identified some bacterial taxa that were enriched in patients who either responded or did not respond to immunotherapy. Using an animal model of bladder cancer, we gathered further evidence of the negative impact of the Ruminococcus bromii on immunotherapy efficacy. Further studies are needed to confirm the current findings and test the utility of these bacteria as predictive markers of immunotherapy response.


Subject(s)
Antibodies, Monoclonal, Humanized , Neoadjuvant Therapy , Ruminococcus , Urinary Bladder Neoplasms , Animals , Humans , Urinary Bladder Neoplasms/pathology , Muscles/pathology
8.
Anaerobe ; 85: 102818, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211774

ABSTRACT

OBJECTIVES: Ruminococcus gnavus is a rare human pathogen, and clinical data on R. gnavus infection are insufficient. This retrospective study aimed to investigate the clinical characteristics of R. gnavus infections. METHODS: This study included 13 cases of bacteremia and three cases of non-bacteremia infections caused by R. gnavus. We evaluated the patient data, infection source, clinical outcomes, and antimicrobial susceptibility of R. gnavus isolates for these cases. RESULTS: The median age of patients was 75 years (range 47-95), and eight patients were female. Twelve cases were presumed to have an intra-abdominal infection source, and the remaining four cases had an unknown infection source. The most common underlying conditions were immunosuppression (seven cases), solid tumors (seven cases), and history of gastrointestinal surgery (five cases). Thirteen patients exhibited gastrointestinal problems (dysfunction, bleeding, intra-abdominal infection, or inflammation). Multiple pathogens were observed in six cases, and fatal outcomes were recorded in three cases. Antimicrobial susceptibility data were available for eight isolates, all of which exhibited low minimum inhibitory concentrations to penicillin (≤0.03 µg/mL), ampicillin-sulbactam (≤0.5 µg/mL), piperacillin-tazobactam (≤4 µg/mL), and metronidazole (≤0.5-1 µg/mL). CONCLUSION: Ruminococcus gnavus is frequently associated with an intra-abdominal infection source, and treatment strategies should consider the possibility of multiple pathogens.


Subject(s)
Anti-Infective Agents , Bacteremia , Clostridiales , Intraabdominal Infections , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Ruminococcus , Retrospective Studies , Intraabdominal Infections/drug therapy , Bacteremia/drug therapy , Bacteremia/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
9.
Nat Struct Mol Biol ; 31(2): 255-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177679

ABSTRACT

Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.


Subject(s)
Glucans , Starch , Humans , Starch/chemistry , Starch/metabolism , Glucans/chemistry , Glucans/metabolism , Amylopectin/metabolism , Ruminococcus/metabolism , Bacteria/metabolism
10.
J Biomol Struct Dyn ; 42(6): 3094-3107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37190992

ABSTRACT

In order to know the insights of a unique naturally existing trimodular licheninase from GH16 family, sub-family 21 (RfGH16_21) from Ruminococcus flavefaciens, its structure was modeled to understand its functional relations to reveal information regarding modifying the enzyme for improved properties with enhanced catalytic efficiency. Homology modeling revealed three tandem repeats of ß-jelly roll like folds linked by natural linkers. Catalytic pockets and the catalytically important amino acids in each tandem repeat of RfGH16_21 determined by multiple sequence alignment and structure superposition with its homologues indicated that two Glu residues are involved in a retaining-type of catalytic mechanism. Sequential molecular docking revealed maximum binding energy with mixed linked cellotriose showing that cellotriose is the lowest oligomeric hydrolysed product formed by the catalytic action of endo-ß-1,3-1,4-glucanase. Molecular dynamic (MD) simulation of RfGH16_21-cellotriose complex confirmed the structural specificity of catalytic residues and increased stability of enzyme in presence of ligand as compared to simulated RfGH16_21 alone. The binding affinity of cellotriose towards the three tandem repeats of RfGH16_21 was also confirmed by calculating total binding Gibbs free energy, i.e. -100.8 ± 2.6 KJ/mol, by using g_mmpbsa tool. The stability of the protein was determined by protein melting analysis that showed Ca2+ and Mg2+ ions imparted structural stability to RfGH16_21. Dynamic light scattering analysis of RfGH16_21 showed monodispersity and hydrodynamic radius of 4.0 nm at 2.0 mg/mL protein concentration, which was comparable with the radius of gyration of 3.2 nm determined by MD simulation showing the protein to be in monomeric form.Communicated by Ramaswamy H. Sarma.


RfGH16_21 is a licheninase with three tandem repeats of GH16 catalytic moduleThe three tandem repeats of RfGH16_21 module possess ß-jelly roll like foldRfGH16_21 showed highest affinity for cellotriose with free energy -100.8 kJ/molMD simulation of cellotriose bound RfGH16_21 confirmed structural compactnessRfGH16_21 structure stability was increased in the presence of Ca2+ and Mg2+ ions.


Subject(s)
Glycoside Hydrolases , Ruminococcus , Amino Acid Sequence , Molecular Docking Simulation
11.
J Microbiol Biotechnol ; 34(1): 85-93, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38044672

ABSTRACT

A high level of ß-amyloid (Aß) in the brains of patients with Alzheimer's disease (AD) generates reactive oxygen species that induce neuronal death and DNA damage. The interaction between the gut microbiota and brain health has attracted attention in recent years. Heat-killed Ruminococcus albus (hkRA) reportedly protects neurons against damage induced by oxidative stress. However, whether hkRA can inhibit Aß-induced apoptosis and thus alleviate AD remains unclear. Hence, we aimed to evaluate the protective effects of hkRA against Aß-induced apoptosis on the human neuroblastoma SH-SY5Y cell. HkRA treatment (108 cells/ml) significantly decreased the Aß-induced cytotoxicity and DNA damage in the SH-SY5Y cells. It also showed a significant increase of the bax/bcl-2 ratio in the Aß-treated SH-SY5Y cells. Moreover, hkRA treatment stimulated the expression of antioxidation-related genes HO-1, Nrf2, and PKC-δ and increased the expression of brain-derived neurotrophic factor (BDNF). Meanwhile, it significantly decreased the activity of caspase-3 and protein expression of cleaved caspase-3 in the Aß-treated SH-SY5Y cells. Additionally, the protein levels of mitochondrial and cytosolic cytochrome c increased and decreased, respectively, in the cells. These results suggest that hkRA protects human neuroblastoma cells from Aß-induced apoptosis and oxidative stress. Thus, hkRA may be developed into a health-promoting paraprobiotic (the inactivated microbial cells of probiotics) for patients with AD.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neuroprotective Agents , Ruminococcus , Humans , Caspase 3/genetics , Caspase 3/metabolism , Hot Temperature , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Apoptosis , Oxidative Stress , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/toxicity , Peptide Fragments/pharmacology
12.
J Ethnopharmacol ; 322: 117656, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38154526

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY: The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS: The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS: GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-ß1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION: GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.


Subject(s)
Gastrointestinal Microbiome , Reishi , Humans , Rats , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Reishi/metabolism , Ruminococcus/metabolism , RNA, Ribosomal, 16S , Liver Cirrhosis/metabolism , Communication , Carbon Tetrachloride/adverse effects
13.
BMC Geriatr ; 23(1): 720, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936084

ABSTRACT

BACKGROUND: Microbiota-gut-brain axis interacts with one another to regulate brain functions. However, whether the impacts of gut dysbiosis on limbic white matter (WM) tracts contribute to the neuropsychiatric symptoms (NPS) in patients with amyloid-positive amnestic mild cognitive impairment (aMCI+), have not been explored yet. This study aimed to investigate the mediation effects of limbic WM integrity on the association between gut microbiota and NPS in patients with aMCI+. METHODS: Twenty patients with aMCI + and 20 healthy controls (HCs) were enrolled. All subjects underwent neuropsychological assessments and their microbial compositions were characterized using 16S rRNA Miseq sequencing technique. Amyloid deposition inspected by positron emission tomography imaging and limbic WM tracts (i.e., fornix, cingulum, and uncinate fasciculus) detected by diffusion tensor imaging were additionally measured in patients with aMCI+. We employed a regression-based mediation analysis using Hayes's PROCESS macro in this study. RESULTS: The relative abundance of genera Ruminococcus and Lactococcus was significantly decreased in patients with aMCI + versus HCs. The relative abundance of Ruminococcus was negatively correlated with affective symptom cluster in the aMCI + group. Notably, this association was mediated by WM integrity of the left cingulate gyrus. CONCLUSIONS: Our findings suggest Ruminococcus as a potential target for the management of affective impairments in patients with aMCI+.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , Brain , Ruminococcus/genetics , Diffusion Tensor Imaging/methods , RNA, Ribosomal, 16S , Cognitive Dysfunction/diagnosis , Neuropsychological Tests
14.
BMC Microbiol ; 23(1): 365, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008735

ABSTRACT

BACKGROUND: Gut microbiome is critical to our human health and is related to postmenopausal osteoporosis (PMO). Strontium ranelate (SrR) is an anti-osteoporosis oral drug that can promote osteoblast formation and inhibit osteoclast formation. However, the effect of SrR on gut microbiome has been rarely studied. Therefore, we investigated the effect of oral SrR on gut microbiome and metabolic profiles. RESULTS: In this study, we used ovariectomized (OVX) Sprague-Dawley rats to construct a PMO model and applied oral SrR for 6 weeks. The relative abundance of intestinal microbiome was investigated by 16S rRNA metagenomic sequencing. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to analyze changes in metabolites of intestinal contents. Results demonstrated that 6-week oral SrR alleviated osteoporosis and significantly changed the composition of the gut microbiome and metabolic profiles of OVX rats. Ruminococcus, Akkermansia and Oscillospira were significantly enriched in the gut of OVX rats after 6-week oral SrR. Especially, the species R. albus showed the greatest importance by a random forest classifier between OVX and OVX_Sr group. The enrichment of R. albus in the gut was positively correlated with bone mineral density and the accumulation of lycopene and glutaric acid, which also significantly elevated after oral SrR. CONCLUSIONS: We discovered that oral SrR can improve bone health while stimulate the accumulation of gut microbe R. albus and metabolites (lycopene and glutaric acid). The results suggested possible connections between oral SrR and the gut-bone axis, which may provide new insight into the treatment/prevention of osteoporosis.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Rats , Animals , Rats, Sprague-Dawley , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/metabolism , Ruminococcus , Lycopene/therapeutic use , RNA, Ribosomal, 16S/genetics , Osteoporosis/drug therapy , Osteoporosis/metabolism
15.
Front Immunol ; 14: 1259521, 2023.
Article in English | MEDLINE | ID: mdl-37954611

ABSTRACT

Tuft cells are a type of rare epithelial cells that have been recently found to utilize taste signal transduction pathways to detect and respond to various noxious stimuli and pathogens, including allergens, bacteria, protists and parasitic helminths. It is, however, not fully understood how many different types of pathogens they can sense or what exact molecular mechanisms they employ to initiate targeted responses. In this study, we found that an anaerobic pathobiont microbe, Ruminococcus gnavus (R. gnavus), can induce tuft cell proliferation in the proximal colon whereas the microbe's lysate can stimulate these proximal colonic tuft cells to release interleukin-25 (IL-25). Nullification of the Gng13 and Trpm5 genes that encode the G protein subunit Gγ13 and transient receptor potential ion channel Trpm5, respectively, or application of the Tas2r inhibitor allyl isothiocyanate (AITC), G protein Gßγ subunit inhibitor Gallein or the phospholipase Cß2 (PLCß2) inhibitor U73122 reduces R. gnavus-elicited tuft cell proliferation or IL-25 release or both. Furthermore, Gng13 conditional knockout or Trpm5 knockout diminishes the expression of gasdermins C2, C3 and C4, and concomitantly increases the activated forms of caspases 3, 8 and 9 as well as the number of TUNEL-positive apoptotic cells in the proximal colon. Together, our data suggest that taste signal transduction pathways are not only involved in the detection of R. gnavus infection, but also contribute to helping maintain gasdermin expression and prevent apoptotic cell death in the proximal colon, and these findings provide another strategy to combat R. gnavus infection and sheds light on new roles of taste signaling proteins along with gasdermins in protecting the integrity of the proximal colonic epithelium.


Subject(s)
Taste , Transient Receptor Potential Channels , Ruminococcus , Signal Transduction , Colon
16.
Front Immunol ; 14: 1268453, 2023.
Article in English | MEDLINE | ID: mdl-38022552

ABSTRACT

Introduction: Gut microbial imbalance (dysbiosis) has been reported in patients with acute Kawasaki disease (KD). However, no studies have analyzed the gut microbiota while focusing on susceptibility to KD. This study aimed to evaluate whether dysbiosis elevates susceptibility to KD by assessing children with a history of KD. Methods: Fecal DNA was extracted from 26 children with a history of KD approximately 1 year prior (KD group, 12 boys; median age, 32.5 months; median time from onset, 11.5 months) and 57 age-matched healthy controls (HC group, 35 boys; median age, 36.0 months). 16S rRNA gene analysis was conducted with the Illumina Miseq instrument. Sequence reads were analyzed using QIIME2. Results: For alpha diversity, Faith's phylogenetic diversity was significantly higher in the KD group. Regarding beta diversity, the two groups formed significantly different clusters based on Bray-Curtis dissimilarity. Comparing microbial composition at the genus level, the KD and HC groups were significantly different in the abundance of two genera with abundance over 1% after Benjamini-Hochberg false discovery rate correction for multiple comparisons. Compared with the HC group, the KD group had higher relative abundance of Ruminococcus gnavus group and lower relative abundance of Blautia. Discussion and conclusion: Ruminococcus gnavus group reportedly includes pro-inflammatory bacteria. In contrast, Blautia suppresses inflammation via butyrate production. In the predictive functional analysis, the proportion of gut microbiota involved in several pathways was lower in the KD group. Therefore, dysbiosis characterized by distinct microbial diversity and decreased abundance of Blautia in parallel with increased abundance of Ruminococcus gnavus group might be a susceptibility factor for KD.


Subject(s)
Gastrointestinal Microbiome , Mucocutaneous Lymph Node Syndrome , Male , Child , Humans , Child, Preschool , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Mucocutaneous Lymph Node Syndrome/genetics , Phylogeny , Acute Disease , Ruminococcus/genetics
18.
Neoplasia ; 43: 100928, 2023 09.
Article in English | MEDLINE | ID: mdl-37579688

ABSTRACT

We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.


Subject(s)
Autophagy , Bacteroidetes , Fatty Acids, Volatile , Gastrointestinal Microbiome , Macrophages , Prostatic Neoplasms, Castration-Resistant , Ruminococcus , Veillonellaceae , Fatty Acids, Volatile/metabolism , Disease Progression , Macrophages/pathology , Cell Polarity , Ruminococcus/metabolism , Prostatic Neoplasms, Castration-Resistant/microbiology , Prostatic Neoplasms, Castration-Resistant/pathology , Mice, Transgenic , Bacteroidetes/metabolism , Veillonellaceae/metabolism , Fecal Microbiota Transplantation , Humans , Male , Animals , Mice
19.
Anaerobe ; 82: 102762, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37481231

ABSTRACT

We present a case of bacteremia caused by Ruminococcus gnavus in an immunocompromised patient. R. gnavus is a Gram-positive strict anaerobe bacterium that forms chains. The bacteremia has been associated with an acute flare of ulcerative colitis. Anaerobic bacteremia is becoming increasingly frequent in patients with compromised gastrointestinal barrier. The role of the human microbiota and its alterations in the pathogenesis of immune-related diseases is an expanding area of interest. R. gnavus has been identified as a microorganism that may be responsible for the development of these diseases. The contribution of anaerobic bacteria to the pathogenesis of inflammatory bowel disease (IBD) is discussed, and cases reported up until 2023 were reviewed.


Subject(s)
Bacteremia , Colitis, Ulcerative , Humans , Bacteremia/diagnosis , Bacteremia/microbiology , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Immunocompromised Host , Ruminococcus
20.
Microb Genom ; 9(7)2023 07.
Article in English | MEDLINE | ID: mdl-37486746

ABSTRACT

Ruminococcus gnavus is prevalent in the intestines of humans and animals, and ambiguities have been reported regarding its relations with the development of diseases and host well-being. We postulate the ambiguities of its function in different cases may be attributed to strain-level variability of genomic features of R. gnavus. We performed comparative genomic and pathogenicity prediction analysis on 152 filtered high-quality genomes, including 4 genomes of strains isolated from healthy adults in this study. The mean G+C content of genomes of R. gnavus was 42.73±0.33 mol%, and the mean genome size was 3.46±0.34 Mbp. Genome-wide evolutionary analysis revealed R. gnavus genomes were divided into three major phylogenetic clusters. Pan-core genome analysis revealed that there was a total of 28 072 predicted genes, and the core genes, soft-core genes, shell genes and cloud genes accounted for 3.74 % (1051/28 072), 1.75 % (491/28 072), 9.88 % (2774/28 072) and 84.63 % (23 756/28 072) of the total genes, respectively. The small proportion of core genes reflected the wide divergence among R. gnavus strains. We found certain coding sequences with determined health benefits (such as vitamin production and arsenic detoxification), whilst some had an implication of health adversity (such as sulfide dehydrogenase subunits). The functions of the majority of core genes were unknown. The most widespread genes functioning in antibiotic resistance and virulence are tetO (tetracycline-resistance gene, present in 75 strains) and cps4J (capsular polysaccharide biosynthesis protein Cps4J encoding gene, detected in 3 genomes), respectively. Our results revealed genomic divergence and the existence of certain safety-relevant factors of R. gnavus. This study provides new insights for understanding the genomic features and health relevance of R. gnavus, and raises concerns regarding predicted prevalent pathogenicity and antibiotic resistance among most of the strains.


Subject(s)
Clostridiales , Ruminococcus , Adult , Animals , Humans , Ruminococcus/genetics , Phylogeny , Clostridiales/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...