Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
Bioorg Chem ; 149: 107503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823312

ABSTRACT

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Subject(s)
L-Lactate Dehydrogenase , Rutin , Rutin/chemistry , Rutin/pharmacology , Rutin/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Docking Simulation , Computer Simulation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
2.
Biomed Mater ; 19(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38740037

ABSTRACT

The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.


Subject(s)
Coated Materials, Biocompatible , Hyaluronic Acid , Osseointegration , Osteoblasts , Osteogenesis , Osteoporosis , Prostheses and Implants , Rutin , Surface Properties , Titanium , Animals , Titanium/chemistry , Rutin/chemistry , Rutin/pharmacology , Osteogenesis/drug effects , Rats , Osteoporosis/drug therapy , Mice , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Osseointegration/drug effects , Hyaluronic Acid/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Oxidation-Reduction , Chitosan/chemistry , Female , Rats, Sprague-Dawley , Cell Adhesion/drug effects , Spectroscopy, Fourier Transform Infrared , Cell Differentiation/drug effects , Microscopy, Electron, Scanning , Cell Proliferation/drug effects , Polyethyleneimine/chemistry , 3T3 Cells , Oxidative Stress/drug effects , Layer-by-Layer Nanoparticles
3.
Biomolecules ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38785985

ABSTRACT

Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on the effect of flavonols isolated from black chokeberry on immune functions during immunosuppression are not available in the literature. Thus, the aim of this study was to evaluate the effect of flavonol fraction isolated from A. melanocarpa fruits, in comparison with pure quercetin and rutin substances, on the dysfunctional state of rat thymus and spleen in immunodeficiency. The study was performed on Wistar rats. The animals were orally administered solutions of the investigated substances for 7 days: water, a mixture of quercetin and rutin and flavonol fraction of A. melanocarpa. For induction of immunosuppression, the animals were injected once intraperitoneally with cyclophosphamide. Substance administration was then continued for another 7 days. The results showed that under the influence of flavonols, there was a decrease in cyclophosphamide-mediated reaction of lipid peroxidation enhancement and stimulation of proliferation of lymphocytes of thymus and spleen in rats. At that, the effect of the flavonol fraction of aronia was more pronounced.


Subject(s)
Cyclophosphamide , Flavonols , Fruit , Photinia , Rats, Wistar , Spleen , Thymus Gland , Animals , Photinia/chemistry , Cyclophosphamide/pharmacology , Rats , Fruit/chemistry , Thymus Gland/drug effects , Flavonols/pharmacology , Flavonols/chemistry , Spleen/drug effects , Male , Plant Extracts/pharmacology , Plant Extracts/chemistry , Immunosuppression Therapy , Quercetin/pharmacology , Quercetin/chemistry , Lipid Peroxidation/drug effects , Immunosuppressive Agents/pharmacology , Cell Proliferation/drug effects , Rutin/pharmacology , Rutin/chemistry
4.
Int J Nanomedicine ; 19: 4465-4493, 2024.
Article in English | MEDLINE | ID: mdl-38779103

ABSTRACT

Background: Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods: CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results: Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 µg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion: The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , NF-kappa B , Nanoparticles , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/chemistry , Rutin/administration & dosage , Rutin/pharmacokinetics , Chitosan/chemistry , Chitosan/pharmacology , Humans , NF-kappa B/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Nanoparticles/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Autophagy/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Mice , Animals , Drug Carriers/chemistry , Drug Carriers/pharmacology , Cell Survival/drug effects
5.
J Colloid Interface Sci ; 670: 499-508, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776685

ABSTRACT

Manganese oxide nanoparticles (MONs)-based contrast agents have attracted increasing attention for magnetic resonance imaging (MRI), attributed to their good biocompatibility and advantageous paramagnetism. However, conventional MONs have poor imaging performance due to low T1 relaxivity. Additionally, their lack of tumor-targeting theranostics capabilities and complex synthesis pathways have impeded clinical applications. Rutin (Ru) is an ideal tumor-targeted ligand that targets glucose transporters (GLUTs) overexpressed in various malignant tumors, and exhibits photothermal effects upon chelation with metal ions. Herein, a series of Ru-coated MONs (Ru/MnO2) were synthesized using a straightforward, rapid one-step process. Specifically, Ru/MnO2-5, with the smallest crystal size of approximately 4 nm, exhibits the highest T1 relaxivity (33.3 mM-1s-1 at 1.5 T, surpassing prior MONs) along with notable stability, photothermal efficacy, and tumor-targeting ability. Furthermore, Ru/MnO2-5 shows promise in MRI and photothermal therapy of H22 tumors owing to its superior GLUTs-mediated tumor-targeting capability.


Subject(s)
Magnetic Resonance Imaging , Manganese Compounds , Nanoparticles , Oxides , Photothermal Therapy , Rutin , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Animals , Nanoparticles/chemistry , Rutin/chemistry , Rutin/pharmacology , Mice , Humans , Particle Size , Surface Properties , Contrast Media/chemistry , Cell Survival/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy
6.
J Agric Food Chem ; 72(23): 13328-13340, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805380

ABSTRACT

Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 µM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.


Subject(s)
Camellia sinensis , Flavonols , Glycosides , Glycosyltransferases , Plant Proteins , Camellia sinensis/genetics , Camellia sinensis/metabolism , Camellia sinensis/enzymology , Camellia sinensis/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Flavonols/metabolism , Flavonols/chemistry , Flavonols/biosynthesis , Glycosides/metabolism , Glycosides/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/enzymology , Kinetics , Rutin/metabolism , Rutin/chemistry
7.
Food Chem ; 453: 139630, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781895

ABSTRACT

Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.


Subject(s)
Colon , Coumaric Acids , Emulsions , Fermentation , Ovalbumin , Polysaccharides , Colon/metabolism , Colon/microbiology , Emulsions/chemistry , Emulsions/metabolism , Ovalbumin/chemistry , Ovalbumin/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Animals , Rutin/chemistry , Rutin/metabolism , Male
8.
Int J Biol Macromol ; 269(Pt 1): 132071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705334

ABSTRACT

Wound healing is a challenging clinical problem and efficient wound management is essential to prevent infection. This is best done by utilizing biocompatible materials in order to complete the healing in a rapid manner, with functional and esthetic outcomes. In this context, the zein protein fulfills the criteria of the ideal wound dressing which include non-toxicity and non-inflammatory stimulation. Zein gels containing rutin were prepared without any chemical refinement or addition of gelling agents in order to obtain a natural formulation characterized by antioxidant and anti-inflammatory properties to be proposed for the treatment of burns and sores. In vitro scratch assay showed that the proposed gel formulations promoted cell migration and a rapid gap closure within 24 h (~90 %). In addition, the in vivo activities of rutin-loaded zein gel showed a greater therapeutic efficacy in Wistar rats, with a decrease of the wound area of about 90 % at day 10 with respect to the free form of the bioactive and to DuoDERM®. The evaluation of various markers (TNF-α, IL-1ß, IL-6, IL-10) confirmed the anti-inflammatory effect of the proposed formulation. The results illustrate the feasibility of exploiting the peculiar features of rutin-loaded zein gels for wound-healing purposes.


Subject(s)
Biocompatible Materials , Gels , Rats, Wistar , Rutin , Wound Healing , Zein , Rutin/chemistry , Rutin/pharmacology , Zein/chemistry , Wound Healing/drug effects , Animals , Gels/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Antioxidants/pharmacology , Antioxidants/chemistry , Green Chemistry Technology , Cell Movement/drug effects , Humans , Cytokines/metabolism
9.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710546

ABSTRACT

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Subject(s)
Antioxidants , Chenopodium quinoa , Flavonoids , Nanoparticles , Rutin , Starch , Zea mays , Flavonoids/chemistry , Rutin/chemistry , Zea mays/chemistry , Nanoparticles/chemistry , Chenopodium quinoa/chemistry , Starch/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Availability , Hydrolysis
10.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720294

ABSTRACT

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Hypocreales/metabolism , Rutin/pharmacology , Rutin/chemistry , Acremonium , Gemcitabine , Disaccharides/pharmacology , Disaccharides/chemistry
11.
Food Chem ; 451: 139350, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663246

ABSTRACT

The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".


Subject(s)
Digestion , Ethanol , Fagopyrum , Quercetin , Rutin , Starch , Fagopyrum/chemistry , Starch/chemistry , Quercetin/chemistry , Ethanol/chemistry , Viscosity , Rutin/chemistry , Particle Size , Plant Extracts/chemistry , Models, Biological , X-Ray Diffraction
12.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683406

ABSTRACT

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Quorum Sensing , Rutin , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Rutin/pharmacology , Rutin/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quorum Sensing/drug effects , Nanoparticles/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metal Nanoparticles/chemistry , Hemolysis/drug effects , Virulence/drug effects , Particle Size , Pyocyanine/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403343

ABSTRACT

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Subject(s)
Crataegus , Hyperlipidemias , Rats , Animals , Crataegus/chemistry , Cholesterol, LDL , Quinic Acid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rutin/chemistry , Lipids , Hyperlipidemias/drug therapy , Quality Control , Glucosides , Citric Acid
14.
Article in English | MEDLINE | ID: mdl-38181708

ABSTRACT

A [BMIM]PF6 ion liquid (IL)-assisted synthesis of a rutin imprinted monolith (RIM) was carried out in an in-situ polymerization method. Bi-functional monomers and a ternary porogen containing IL was used for the RIM preparation and a L9(33) orthogonal factor design performed. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and N2 adsorption method was for structural characterization of the RIMs. The monolith was directly used as stationary phase in liquid chromatography to test the retention selectivity, adsorption capacity and extraction application. The optimized porogen consists of 900 µL DMF, 144 µL ACN and 216 µL IL. The monolith RIM-13 obtained under the optimized conditions possessed improved adsorption performance, with a dynamic adsorption capacity of 6.695 mg/g, an imprinting efficiency of 4.841 and a selectivity α value of 4.821. Additionally, this monolith had also higher specific surface area, pore volume and permeability than that obtained without IL and the homogeneity of the imprint sites could be improved by using IL. When the RIM-13 was applied to the separation and purification of rutin from tartary buckwheat, a rutin product with a purity higher than 92 % can be obtained by one cycle. This molecular imprint solid-phase extraction (MI-SPE) is of potency to be applied to preparative-scale separation of other natural products.


Subject(s)
Ionic Liquids , Molecular Imprinting , Rutin/chemistry , Ionic Liquids/chemistry , Spectroscopy, Fourier Transform Infrared , Molecular Imprinting/methods , Chromatography, Liquid , Solid Phase Extraction/methods , Adsorption , Chromatography, High Pressure Liquid
15.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37858650

ABSTRACT

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Subject(s)
Fagopyrum , Quercetin , Quercetin/chemistry , Phenols , Phenol , Fagopyrum/chemistry , Rutin/chemistry , Binding Sites
16.
Food Funct ; 14(23): 10493-10505, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37938858

ABSTRACT

Flavonoids often exhibit broad bioactivity but low solubility and bioavailability, limiting their practical applications. The transglycosylated materials α-glucosyl rutin (Rutin-G) and α-glucosyl hesperidin (Hsp-G) are known to enhance the dissolution of hydrophobic compounds, such as flavonoids and other polyphenols. In this study, the effects of these materials on flavone solubilization were investigated by probing their interactions with flavone in aqueous solutions. Rutin-G and Hsp-G prepared via solvent evaporation and spray-drying methods were evaluated for their ability to dissolve flavones. Rutin-G had a stronger flavone-solubilizing effect than Hsp-G in both types of composite particles. The origin of this difference in behavior was elucidated by small-angle X-ray scattering (SAXS) and nuclear magnetic resonance analyses. The different self-association structures of Rutin-G and Hsp-G were supported by SAXS analysis, which proved that Rutin-G formed polydisperse aggregates, whereas Hsp-G formed core-shell micelles. The observation of nuclear Overhauser effects (NOEs) between flavone and α-glucosyl materials suggested the existence of intermolecular hydrophobic interactions. However, flavone interacted with different regions of Rutin-G and Hsp-G. In particular, NOE correlations were observed between the protons of flavone and the α-glucosyl protons of Rutin-G. The different molecular association states of Rutin-G or Hsp-G could be responsible for their different effects on the solubility of flavone. A better understanding of the mechanism of flavone solubility enhancement via association with α-glucosyl materials would permit the application of α-glucosyl materials to the solubilization of other hydrophobic compounds including polyphenols such as flavonoids.


Subject(s)
Flavones , Hesperidin , Hesperidin/chemistry , Rutin/chemistry , X-Ray Diffraction , Protons , Scattering, Small Angle , Flavonoids , Magnetic Resonance Spectroscopy , Solubility
17.
Int J Biol Macromol ; 253(Pt 2): 126810, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690654

ABSTRACT

The appropriateness of animal by-product proteins as emulsifiers is barely explored compared to their meat counterparts. This paper focused on improving interfacial and emulsifying properties of modified goose liver protein using three structurally relevant polyphenols either enhanced by pH shifting (P-catechin, P-quercetin and P-rutin) or not (catechin, quercetin and rutin). Due to its high hydrophobicity and limited steric hindrance, quercetin was more sufficient to hydrophobically interact (ΔH > 0, ΔS > 0) with MGLP than catechin and rutin. Results showed that polyphenol interactive affinity was positively correlated to surface hydrophobicity but negatively to size and aggregation extent of MGLP. Interfacial pressure and dilatational elastic modulus implied that synergistic polyphenol interaction and pH shifting favored the interfacial adsorption and macromolecular association of MGLP, particularly for P-quercetin with the values reached to 19.9 ± 2.0 mN/m and 22.9 ± 1.2 mN/m, respectively. Emulsion stabilized by P-quercetin also maintained highest physical and oxidative stabilities regarding the lowest D [4,3] (3.78 ± 0.27 µm) and creaming index (8.38 ± 0.43 %), together with highest mono- (19.51 %) and polyunsaturated fatty acid content (29.39 %) during storage. Overall, chemical structure of polyphenols may be determining in fabricating MGLP-polyphenol complexes with improved emulsion stabilization efficiency.


Subject(s)
Catechin , Quercetin , Animals , Quercetin/chemistry , Emulsions/chemistry , Geese , Catechin/chemistry , Phenols , Proteins , Polyphenols/chemistry , Emulsifying Agents/chemistry , Rutin/chemistry , Hydrogen-Ion Concentration , Meat , Liver
18.
Food Chem ; 419: 135758, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37004365

ABSTRACT

The preparation of Tartary buckwheat protein and phenolic extract complex by pH-driven treatment was studied. The phenols identified by HPLC-MS spectrometry mainly include rutin, quercetin and kaempferol. The content of phenol bound to protein was 33.49 and 6.31 mg/g. The FT-IR and fluorescence spectroscopy confirmed that the treatment of pH-driven and combination of phenol can affect the secondary and tertiary structure of the protein. The alteration of free sulfhydryl content indicated that there may be binding between phenol and Cys residue of protein. Molecular docking analysis showed the binding sites of the phenols and protein treated at different pH values were significantly different. Furthermore, In the simulated digestion in vitro, the digestibility of complex was significantly lower than that of protein. Pepsin can promote the antioxidant ability, and have little effect on ADH activation. The above result can play a positive role in the development of the food field.


Subject(s)
Fagopyrum , Fagopyrum/chemistry , Phenol , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Rutin/chemistry , Phenols/chemistry , Hydrogen-Ion Concentration
19.
Mini Rev Med Chem ; 23(14): 1451-1460, 2023.
Article in English | MEDLINE | ID: mdl-36698235

ABSTRACT

Flavonoids are compounds abundantly found in nature and known as a polyphenolic group of compounds having flavancore and show the utmost abundant collection of complexes and are found in fiber-rich root vegetables, fruits, and their eatable items. Due to the presence of hydroxyl groups, flavonoids show various therapeutic activities like antioxidant, antibacterial, antiviral, and antiinflammatory. Substituent groups are responsible for the onset of biochemical actions of flavonoids, which affect the metabolism. The major example of flavonol is rutin, which is constituted of rutinose and quercetin. It is a glycosidic type of flavonoid, similarly identified as purple quercitrin and Vitamin P with over 70 plant species and plant-derived foods, exclusively grapefruit, buckwheat seeds, cherries, apricots, grapes, onions, plums, and oranges. Another name forrutin is a citrus flavonoid known as rutoside, and sophorin. Rutin is a polyphenolic compound having a low molecular weight.


Subject(s)
Biosynthetic Pathways , Rutin , Antioxidants/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Quercetin/chemistry , Rutin/chemistry , Seeds/chemistry
20.
Int J Biol Macromol ; 233: 123436, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36708899

ABSTRACT

To investigate the effects of structure, multiple binding sites and antioxidant property of Tartary buckwheat protein-phenols covalent complex, protein was combined with different concentrations of phenolic extract. Four kinds of phenols were identified by UPLC-Q/TOF-MS, which were rutin, quercetin, kaempferol and myricetin. UV-vis absorption spectroscopy and X-ray diffraction showed that the phenols can successfully bind to BPI. Fourier-transform infrared, circular dichroism and fluorescence emission spectroscopy showed that the binding of phenol can change the secondary/tertiary structure of protein. The particle distribution indicated that the binding of phenols could reduce the particle size (from 304.70 to 205.55 nm), but cross-linking occurred (435.35 nm) when the bound phenol content was too high. Proteomics showed that only rutin, quercetin and myricetin can covalently bind to BPI. Meanwhile, 4 peptides covalently bound to phenols were identified. The DPPH· scavenging capacity of complexes were from 8.38 to 33.76 %, and the ABTS·+ binding activity of complexes were from 19.35 to 63.99 %. The antioxidant activity of the complex was significantly higher than that of the pure protein. These results indicated that protein-phenol covalent complexes had great potential as functional components in the food field.


Subject(s)
Antioxidants , Fagopyrum , Antioxidants/chemistry , Quercetin/chemistry , Phenols/chemistry , Fagopyrum/chemistry , Phenol/metabolism , Rutin/chemistry , Binding Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...