Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.133
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 581-585, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684305

ABSTRACT

OBJECTIVE: To explore the clinical features and genetic etiology of a child with Central core disease (CCD). METHODS: A child with CCD who was treated at the Children's Hematology Department of the First Affiliated Hospital of Zhengzhou University in February 2022 was selected as the study subject. Muscle biopsy was performed. Peripheral blood samples were collected from the child and his parents for the extraction of genomic DNA. The child was subjected to whole exome sequencing (WES), and candidate variant was verified by Sanger sequencing. RESULTS: The child, a 12-year-old boy, had manifested motor retardation, facial weakness, ptosis, pectus carinatum, scoliosis, etc. Muscle biopsy showed that the central nucleus muscle fibers and atrophic muscle fibers were mainly type I. WES revealed that the child has harbored c.10561G>A (p.G3521S) and c.3448T>C (p.C1150R) compound heterozygous variants of the RYR1 gene. Sanger sequencing confirmed that they were inherited from his mother and father, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics, both variants were considered as likely pathogenic (PS4+PM1+PM2_Supporting+PP3;PM1+PM2_Supporting+PM3+PP3). CONCLUSION: By combining his clinical manifestation and results of muscle pathology and genetic testing, the child was diagnosed with CCD, which may be attributed to the c.10561G>A (p.G3521S) and c.3448T>C (p.C1150R) compound heterozygous variants of the RYR1 gene.


Subject(s)
Heterozygote , Myopathy, Central Core , Ryanodine Receptor Calcium Release Channel , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Male , Child , Myopathy, Central Core/genetics , Exome Sequencing , Mutation , Genetic Testing
2.
BMC Pulm Med ; 24(1): 194, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649898

ABSTRACT

BACKGROUND: Patients with congenital myopathies may experience respiratory involvement, resulting in restrictive ventilatory dysfunction and respiratory failure. Pulmonary hypertension (PH) associated with this condition has never been reported in congenital ryanodine receptor type 1(RYR1)-related myopathy. CASE PRESENTATION: A 47-year-old woman was admitted with progressively exacerbated chest tightness and difficulty in neck flexion. She was born prematurely at week 28. Her bilateral lower extremities were edematous and muscle strength was grade IV-. Arterial blood gas analysis revealed hypoventilation syndrome and type II respiratory failure, while lung function test showed restrictive ventilation dysfunction, which were both worse in the supine position. PH was confirmed by right heart catheterization (RHC), without evidence of left heart disease, congenital heart disease, or pulmonary artery obstruction. Polysomnography indicated nocturnal hypoventilation. The ultrasound revealed reduced mobility of bilateral diaphragm. The level of creatine kinase was mildly elevated. Magnetic resonance imaging showed myositis of bilateral thigh muscle. Muscle biopsy of the left biceps brachii suggested muscle malnutrition and congenital muscle disease. Gene testing revealed a missense mutation in the RYR1 gene (exon33 c.C4816T). Finally, she was diagnosed with RYR1-related myopathy and received long-term non-invasive ventilation (NIV) treatment. Her symptoms and cardiopulmonary function have been greatly improved after 10 months. CONCLUSIONS: We report a case of RYR1-related myopathy exhibiting hypoventilation syndrome, type II respiratory failure and PH associated with restrictive ventilator dysfunction. Pulmonologists should keep congenital myopathies in mind in the differential diagnosis of type II respiratory failure, especially in patients with short stature and muscle weakness.


Subject(s)
Hypertension, Pulmonary , Muscle Weakness , Respiratory Insufficiency , Ryanodine Receptor Calcium Release Channel , Humans , Female , Ryanodine Receptor Calcium Release Channel/genetics , Middle Aged , Muscle Weakness/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Respiratory Insufficiency/etiology , Mutation, Missense , Magnetic Resonance Imaging , Muscular Diseases/genetics , Muscular Diseases/diagnosis , Muscular Diseases/complications
4.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664444

ABSTRACT

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Subject(s)
Adaptor Proteins, Signal Transducing , Aging , Myocardium , Nerve Tissue Proteins , Ryanodine Receptor Calcium Release Channel , Tumor Suppressor Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Aging/metabolism , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Gene Knockdown Techniques , Endosomes/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Heart/physiopathology , Mice, Inbred C57BL , Humans , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Systole
5.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Article in English | MEDLINE | ID: mdl-38644198

ABSTRACT

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Subject(s)
Calcium Channel Blockers , Ryanodine Receptor Calcium Release Channel , Humans , Calcium/metabolism , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Molecular Structure , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Structure-Activity Relationship , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics
6.
Front Endocrinol (Lausanne) ; 15: 1258982, 2024.
Article in English | MEDLINE | ID: mdl-38444585

ABSTRACT

Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Adult , Animals , Humans , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Exome Sequencing , Genome-Wide Association Study , Glucose , Mutation, Missense , Ryanodine Receptor Calcium Release Channel/genetics
7.
J Gen Physiol ; 156(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38445312

ABSTRACT

RYR1 is the most commonly mutated gene associated with congenital myopathies, a group of early-onset neuromuscular conditions of variable severity. The functional effects of a number of dominant RYR1 mutations have been established; however, for recessive mutations, these effects may depend on multiple factors, such as the formation of a hypomorphic allele, or on whether they are homozygous or compound heterozygous. Here, we functionally characterize a new transgenic mouse model knocked-in for mutations identified in a severely affected child born preterm and presenting limited limb movement. The child carried the homozygous c.14928C>G RYR1 mutation, resulting in the p.F4976L substitution. In vivo and ex vivo assays revealed that homozygous mice fatigued sooner and their muscles generated significantly less force compared with their WT or heterozygous littermates. Electron microscopy, biochemical, and physiological analyses showed that muscles from RyR1 p.F4976L homozygous mice have the following properties: (1) contain fewer calcium release units and show areas of myofibrillar degeneration, (2) contain less RyR1 protein, (3) fibers show smaller electrically evoked calcium transients, and (4) their SR has smaller calcium stores. In addition, single-channel recordings indicate that RyR1 p.F4976L exhibits higher Po in the presence of 100 µM [Ca2+]. Our mouse model partly recapitulates the clinical picture of the homozygous human patient and provides significant insight into the functional impact of this mutation. These results will help understand the pathology of patients with similar RYR1 mutations.


Subject(s)
Calcium , Muscular Diseases , Animals , Child , Humans , Mice , Disease Models, Animal , Homeostasis , Mice, Transgenic , Muscles , Ryanodine Receptor Calcium Release Channel/genetics
8.
Rev Neurol ; 78(7): 179-183, 2024 Apr 01.
Article in Spanish | MEDLINE | ID: mdl-38502166

ABSTRACT

INTRODUCTION: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. PATIENTS AND METHODS: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. RESULTS: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another. CONCLUSIONS: RYR1-RM in our series exhibited phenotypic and involvement variability, with an incidence in our area of around 1 in 10,000 live births. Most cases were male, with dominant missense variants. We contribute five previously undescribed genetic variants.


TITLE: Miopatías RYR1 en la infancia: correlación fenotipo-genotipo e incidencia.Introducción. Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos. Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados. De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones. Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.


Subject(s)
Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Humans , Male , Child , Adolescent , Female , Ryanodine Receptor Calcium Release Channel/genetics , Cross-Sectional Studies , Incidence , Muscular Diseases/epidemiology , Muscular Diseases/genetics , Genetic Association Studies , Phenotype , Genotype
10.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542460

ABSTRACT

Malignant hyperthermia (MH) is a pharmacogenetic condition of skeletal muscle that manifests in hypermetabolic responses upon exposure to volatile anaesthetics. This condition is caused primarily by pathogenic variants in the calcium-release channel RYR1, which disrupts calcium signalling in skeletal muscle. However, our understanding of MH genetics is incomplete, with no variant identified in a significant number of cases and considerable phenotype diversity. In this study, we applied a transcriptomic approach to investigate the genome-wide gene expression in MH-susceptible cases using muscle biopsies taken for diagnostic testing. Baseline comparisons between muscle from MH-susceptible individuals (MHS, n = 8) and non-susceptible controls (MHN, n = 4) identified 822 differentially expressed genes (203 upregulated and 619 downregulated) with significant enrichment in genes associated with oxidative phosphorylation (OXPHOS) and fatty acid metabolism. Investigations of 10 OXPHOS target genes in a larger cohort (MHN: n = 36; MHS: n = 36) validated the reduced expression of ATP5MD and COQ6 in MHS samples, but the remaining 8 selected were not statistically significant. Further analysis also identified evidence of a sex-linked effect in SDHB and UQCC3 expression, and a difference in ATP5MD expression across individuals with MH sub-phenotypes (trigger from in vitro halothane exposure only, MHSh (n = 4); trigger to both in vitro halothane and caffeine exposure, MHShc (n = 4)). Our data support a link between MH-susceptibility and dysregulated gene expression associated with mitochondrial bioenergetics, which we speculate plays a role in the phenotypic variability observed within MH.


Subject(s)
Malignant Hyperthermia , Humans , Malignant Hyperthermia/genetics , Malignant Hyperthermia/metabolism , Halothane/pharmacology , Halothane/metabolism , Oxidative Phosphorylation , Calcium/metabolism , Muscle, Skeletal/metabolism , Disease Susceptibility/metabolism , Biopsy , Gene Expression , Muscle Contraction , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Carrier Proteins/metabolism
11.
J Neuromuscul Dis ; 11(3): 647-653, 2024.
Article in English | MEDLINE | ID: mdl-38489196

ABSTRACT

Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.


Subject(s)
Mosaicism , Phenotype , Ryanodine Receptor Calcium Release Channel , Humans , Genetic Association Studies , Myotonia Congenita/genetics , Myotonia Congenita/diagnosis , Ryanodine Receptor Calcium Release Channel/genetics , Male , Child, Preschool
12.
Prenat Diagn ; 44(4): 522-526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520674

ABSTRACT

Congenital myopathies are a genetically heterogeneous group of neuromuscular disorders that commonly present with congenital hypotonia and weakness but can also present broadly. The most severe presentation is neonatal with arthrogryposis and, rarely, fetal akinesia and pterygia, features also seen in lethal multiple pterygium syndrome (LMPS). We describe two fetuses with similar phenotype, including hydrops fetalis, large cystic hygromas, bilateral talipes, and fetal akinesia in the second trimester. Genetic diagnoses were made using exome sequencing. Both fetuses had a severe form of congenital myopathy. In the first fetus, we identified two novel compound heterozygous likely pathogenic variants consistent with autosomal recessive RYR1-related congenital myopathy (congenital myopathy 1B). In the second fetus, we identified two likely pathogenic variants, one of which is novel, likely in trans consistent with a diagnosis of autosomal recessive NEB-related congenital myopathy. Reaching a genetic diagnosis for these fetuses allowed the families to receive accurate genetic counseling for future pregnancies. These fetuses highlight the genetic and phenotypic heterogeneity of LMPS, and support a broad approach to genetic testing.


Subject(s)
Abnormalities, Multiple , Cleft Palate , Fetal Diseases , Lymphangioma, Cystic , Malignant Hyperthermia , Muscular Diseases , Skin Abnormalities , Female , Humans , Pregnancy , Ryanodine Receptor Calcium Release Channel/genetics
13.
Insect Biochem Mol Biol ; 168: 104107, 2024 May.
Article in English | MEDLINE | ID: mdl-38492676

ABSTRACT

The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.


Subject(s)
Diamide , Insecticide Resistance , Moths , Animals , Diamide/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Insecticides/metabolism , Moths/genetics , Moths/metabolism , Mutation , ortho-Aminobenzoates/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
15.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38253398

ABSTRACT

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Subject(s)
Biological Products , Depsipeptides , Mice , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Depsipeptides/metabolism , Depsipeptides/therapeutic use , Death, Sudden, Cardiac/etiology , Myocytes, Cardiac/metabolism , Calcium/metabolism
16.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221511

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Mice , Animals , Dogs , Cardiomyopathy, Dilated/etiology , Dystrophin/genetics , Dystrophin/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Mice, Inbred mdx , Calcium/metabolism , Proteomics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibrosis
17.
Genet Med ; 26(4): 101083, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281099

ABSTRACT

PURPOSE: The American College of Medical Genetics and Genomics and the Association for Molecular Pathology have outlined a schema that allows for systematic classification of variant pathogenicity. Although gnomAD is generally accepted as a reliable source of population frequency data and ClinGen has provided guidance on the utility of specific bioinformatic predictors, there is no consensus source for identifying publications relevant to a variant. Multiple tools are available to aid in the identification of relevant variant literature, including manually curated databases and literature search engines. We set out to determine the utility of 4 literature mining tools used for ascertainment to inform the discussion of the use of these tools. METHODS: Four literature mining tools including the Human Gene Mutation Database, Mastermind, ClinVar, and LitVar 2.0 were used to identify relevant variant literature for 50 RYR1 variants. Sensitivity and precision were determined for each tool. RESULTS: Sensitivity among the 4 tools ranged from 0.332 to 0.687. Precision ranged from 0.389 to 0.906. No single tool retrieved all relevant publications. CONCLUSION: At the current time, the use of multiple tools is necessary to completely identify the literature relevant to curate a variant.


Subject(s)
Data Mining , Genetic Variation , Ryanodine Receptor Calcium Release Channel , Humans , Gene Frequency , Genetic Testing , Genetic Variation/genetics , Mutation , Ryanodine Receptor Calcium Release Channel/genetics
18.
Int J Biol Macromol ; 260(Pt 1): 129424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219929

ABSTRACT

Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.


Subject(s)
Peptides , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Amino Acid Sequence , Ryanodine/metabolism , Ryanodine/pharmacology , Peptides/chemistry , Protein Structure, Secondary , Calcium/metabolism , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...