Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
2.
Rev. cuba. invest. bioméd ; 25(2)abr.-jun. 2006. graf
Article in Spanish | CUMED | ID: cum-33364

ABSTRACT

Se realizó una revisión de la S-adenosil metionina, considerado como el donante fundamental de grupos metilo en el organismo. Por una reacción de transmetilación es obtenida la S-adenosil homocisteína, que es un potente inhibidor de transmetilasas dependientes de S-adenosil metionina. La inhibición de las reacciones de transmetilación dependientes de esta última, es revelada por la conversión metabólica de S-adenosil homocisteína en adenosina y L-homocisteína mediante una reacción reversible, catalizada por la enzima S-adenosil homocisteína hidrolasa. Esta enzima se encuentra fundamentalmente localizada en hígado, páncreas y riñón, en el organismo. Está compuesta por 2 cadenas alfa y 2 beta, unidas por 4 puentes disulfuro y contiene residuos sulfidrilos. Se encuentra regulada por sus sustratos, adenosina y L-homocisteína, además, por purinas y otros metabolitos in vitro. La S-adenosil homocisteína hidrolasa se encuentra inhibida de forma irreversible por 5-desoí-5-difluorometil tioadenosina y 5-deoxy-5-trifluorometil tioadenosina(AU)


Subject(s)
Humans , S-Adenosylmethionine/antagonists & inhibitors , S-Adenosylhomocysteine/antagonists & inhibitors , Adenosine/antagonists & inhibitors
3.
Bioorg Med Chem Lett ; 16(10): 2662-5, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16504506

ABSTRACT

MTAN has been known to occur in a variety of bacterial cell types. Due to the evolution of bacterial strains which are resistant to some of the most powerful antibiotics there has been a renewed interest in the development of novel anti-microbial agents. Presented herein is a synthesis of a potent MTAN inhibitor, namely 2-amino-4-[5-(4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)-3,4-dihydroxypyrrolidin-2-ylmethylsulfanyl]-butyric acid (1).


Subject(s)
Butyrates/chemical synthesis , Butyrates/pharmacology , Deoxyadenosines/antagonists & inhibitors , S-Adenosylhomocysteine/antagonists & inhibitors , Thionucleosides/antagonists & inhibitors , Spectrophotometry, Ultraviolet
5.
J Nutr ; 133(9): 2845-8, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12949375

ABSTRACT

Previous studies showed that chronic ethanol administration inhibits methionine synthase activity, resulting in impaired homocysteine remethylation to form methionine. This defect in homocysteine remethylation was shown to increase plasma homocysteine and to interfere with the production of hepatic S-adenosylmethionine (SAM) in ethanol-fed rats. These changes were shown to be reversed by the administration of betaine, an alternative methylating agent. This study was undertaken to determine additional effects of ethanol on methionine metabolism and their functional consequences. The influences of methionine loading and betaine supplementation were also evaluated. Adult Wistar rats were fed ethanol or a control Lieber-DeCarli liquid diet for 4 wk, and metabolites of the methionine cycle were measured in vitro in isolated hepatocytes under basal and methionine-supplemented conditions. S-Adenosylhomocysteine (SAH) concentrations were elevated in hepatocytes isolated from ethanol-fed rats compared with controls and in hepatocytes from both groups when supplemented with methionine. The addition of betaine to the methionine-supplemented incubation media reduced the elevated SAH levels. The decrease in the intracellular SAH:SAM ratio due to ethanol consumption inhibited the activity of the liver-specific SAM-dependent methyltransferase, phosphatidylethanolamine methyltransferase. Our data indicate that betaine, by remethylating homocysteine and removing SAH, overcomes the detrimental effects of ethanol consumption on methionine metabolism and may be effective in correcting methylation defects and treating liver diseases.


Subject(s)
Betaine/pharmacology , Ethanol/administration & dosage , Hepatocytes/metabolism , S-Adenosylhomocysteine/antagonists & inhibitors , Administration, Oral , Animals , Male , Methionine/pharmacology , Methyltransferases/metabolism , Phosphatidylethanolamine N-Methyltransferase , Rats , Rats, Wistar , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism
7.
J Neurochem ; 36(1): 165-70, 1981 Jan.
Article in English | MEDLINE | ID: mdl-6257844

ABSTRACT

Membranes from rat cerebral cortex are able to bind S-adenosyl-L-homocysteine (SAH) with a KD of 5 . 10(-7) M and n of 170 pmol/g fresh tissue (i.e. 20 mg protein). The binding is enhanced by Mg2+ and Ca2+ but not K+ and Na+. gamma-Aminobutyric acid, diazepine, noradrenaline and alpha antagonists are without any effect; S-adenosyl-L-methionine, adenosine and adenosine triphosphate inhibit SAH binding. Linkage with an adenosine receptor has not been expressly demonstrated by our method. SAH binding proteins are more abundant in the crude synaptosomal pellet (P2). A similar fixation seems to occur on brain membranes after [3H]SAH administration to rat. The binding might be linked to a methylase activity or an adenosine receptor.


Subject(s)
Brain Chemistry , Homocysteine/analogs & derivatives , S-Adenosylhomocysteine/metabolism , Adenosine/pharmacology , Animals , Calcium/pharmacology , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Chromatography, High Pressure Liquid , Magnesium/pharmacology , Male , Protein Binding/drug effects , Rats , Receptors, Neurotransmitter/metabolism , S-Adenosylhomocysteine/antagonists & inhibitors , S-Adenosylhomocysteine/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...