Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J. physiol. biochem ; 71(4): 659-667, dic. 2015.
Article in English | IBECS | ID: ibc-145719

ABSTRACT

Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1 %) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine Beta-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine Beta-synthase


Subject(s)
Rats , Animals , Tocotrienols/pharmacokinetics , Methionine , Cystathionine beta-Synthase , Liver/physiology , Homocysteine/analysis , S-Adenosylhomocysteine/pharmacokinetics , S-Adenosylmethionine , Methionine Adenosyltransferase
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(22): 2061-6, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19502114

ABSTRACT

S-Adenosylmethionine (SAM) serves as a methyl donor in biological transmethylation reactions. S-Adenosylhomocysteine (SAH) is the product as well as the inhibitor of transmethylations and the ratio SAM/SAH is regarded as the measure of methylating capacity ("methylation index"). We present a rapid and sensitive LC-MS/MS method for SAM and SAH determination in mice tissues. The method is based on chromatographic separation on a Hypercarb column (30 mm x 2.1 mm, 3 microm particle size) filled with porous graphitic carbon stationary phase. Sufficient retention of SAM and SAH on the chromatographic packing allows simple sample preparation protocol avoiding solid phase extraction step. No significant matrix effects were observed by analysing the tissue extracts on LC-MS/MS. The intra-assay precision was less than 9%, the inter-assay precision was less than 13% and the accuracy was in the range 98-105% for both compounds. Stability of both metabolites during sample preparation and storage of tissue samples was studied: the SAM/SAH ratio in liver samples dropped by 34% and 48% after incubation of the tissues at 4 degrees C for 5 min and at 25 degrees C for 2 min, respectively. Storage of liver tissues at -80 degrees C for 2 months resulted in decrease of SAM/SAH ratio by 40%. These results demonstrate that preanalytical steps are critical for obtaining valid data of SAM and SAH in tissues.


Subject(s)
Chromatography, Liquid/methods , S-Adenosylhomocysteine/chemistry , S-Adenosylmethionine/chemistry , Tandem Mass Spectrometry/methods , Animals , Kidney/chemistry , Liver/chemistry , Male , Mice , Mice, Inbred C57BL , S-Adenosylhomocysteine/pharmacokinetics , S-Adenosylmethionine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...