Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.006
Filter
1.
Int J Biol Sci ; 20(7): 2622-2639, 2024.
Article in English | MEDLINE | ID: mdl-38725840

ABSTRACT

Sorafenib is a standard first-line drug for advanced hepatocellular carcinoma, but the serious cardiotoxic effects restrict its therapeutic applicability. Here, we show that iron-dependent ferroptosis plays a vital role in sorafenib-induced cardiotoxicity. Remarkably, our in vivo and in vitro experiments demonstrated that ferroptosis inhibitor application neutralized sorafenib-induced heart injury. By analyzing transcriptome profiles of adult human sorafenib-treated cardiomyocytes, we found that Krüppel-like transcription factor 11 (KLF11) expression significantly increased after sorafenib stimulation. Mechanistically, KLF11 promoted ferroptosis by suppressing transcription of ferroptosis suppressor protein 1 (FSP1), a seminal breakthrough due to its ferroptosis-repressing properties. Moreover, FSP1 knockdown showed equivalent results to glutathione peroxidase 4 (GPX4) knockdown, and FSP1 overexpression counteracted GPX4 inhibition-induced ferroptosis to a substantial extent. Cardiac-specific overexpression of FSP1 and silencing KLF11 by an adeno-associated virus serotype 9 markedly improved cardiac dysfunction in sorafenib-treated mice. In summary, FSP1-mediated ferroptosis is a crucial mechanism for sorafenib-provoked cardiotoxicity, and targeting ferroptosis may be a promising therapeutic strategy for alleviating sorafenib-induced cardiac damage.


Subject(s)
Cardiotoxicity , Ferroptosis , S100 Calcium-Binding Protein A4 , Sorafenib , Sorafenib/adverse effects , Ferroptosis/drug effects , Animals , Mice , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Humans , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics
2.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627387

ABSTRACT

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Subject(s)
NF-kappa B , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Down-Regulation/genetics , Liver Cirrhosis/metabolism , Macrophages/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Chemokine , S100 Calcium-Binding Protein A4
3.
Cell Death Dis ; 15(4): 260, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609357

ABSTRACT

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast , Phosphorylation , Down-Regulation , Tumor Microenvironment , S100 Calcium-Binding Protein A4 , Annexins , STAT3 Transcription Factor
4.
Gene ; 911: 148333, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38431233

ABSTRACT

BACKGROUND: The elevated metastasis rate of uveal melanoma (UM) is intricately correlated with patient prognosis, significantly affecting the quality of life. S100 calcium-binding protein A4 (S100A4) has tumorigenic properties; therefore, the present study investigated the impact of S100A4 on UM cell proliferation, apoptosis, migration, and invasion using bioinformatics and in vitro experiments. METHODS: Bioinformatic analysis was used to screen S100A4 as a hub gene and predict its possible mechanism in UM cells, and the S100A4 silencing cell line was constructed. The impact of S100A4 silencing on the proliferative ability of UM cells was detected using the Cell Counting Kit-8 and colony formation assays. Annexin V-FITC/PI double fluorescence and Hoechst 33342 staining were used to observe the effects of apoptosis on UM cells. The effect of S100A4 silencing on the migratory and invasive capabilities of UM cells was assessed using wound healing and Transwell assays. Western blotting was used to detect the expression of related proteins. RESULTS: The present study found that S100A4 is a biomarker of UM, and its high expression is related to poor prognosis. After constructing the S100A4 silencing cell line, cell viability, clone number, proliferating cell nuclear antigen, X-linked inhibitor of apoptosis protein, and survivin expression were decreased in UM cells. The cell apoptosis rate and relative fluorescence intensity increased, accompanied by increased levels of Bax and caspase-3 and decreased levels of Bcl-2. Additionally, a decrease in the cell migration index and relative invasion rate was observed with increased E-cadherin expression and decreased N-cadherin and vimentin protein expression. CONCLUSION: S100A4 silencing can inhibit the proliferation, migration, and invasion and synchronously induces apoptosis in UM cells.


Subject(s)
Melanoma , S100 Proteins , Uveal Neoplasms , Humans , Apoptosis/genetics , Carcinogenesis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Melanoma/genetics , Melanoma/pathology , Quality of Life , S100 Calcium-Binding Protein A4/genetics , S100 Proteins/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology
5.
Cell Death Differ ; 31(4): 497-510, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374229

ABSTRACT

Poly ADP-ribose polymerase inhibitors (PARPis) exhibit promising efficacy in patients with BRCA mutations or homologous repair deficiency (HRD) in ovarian cancer (OC). However, less than 40% of patients have HRD, it is vital to expand the indications for PARPis in BRCA-proficient patients. Ferroptosis suppressor protein 1 (FSP1) is a key protein in a newly identified ferroptosis-protective mechanism that occurs in parallel with the GPX4-mediated pathway and is associated with chemoresistance in several cancers. Herein, FSP1 is reported to be negatively correlated with the prognosis in OC patients. Combination therapy comprising olaparib and iFSP1 (a FSP1 inhibitor) strongly inhibited tumour proliferation in BRCA-proficient OC cell lines, patient-derived organoids (PDOs) and xenograft mouse models. Surprisingly, the synergistic killing effect could not be reversed by ferroptosis inhibitors, indicating that mechanisms other than ferroptosis were responsible for the synergistic lethality. In addition, cotreatment was shown to induce increased γH2A.X foci and to impair nonhomologous end joining (NHEJ) activity to a greater extent than did any single drug. Mass spectrometry and immunoprecipitation analyses revealed that FSP1 interacted with Ku70, a classical component recruited to and occupying the end of double-strand breaks (DSBs) in the NHEJ process. FSP1 inhibition decreased Ku70 PARylation, impaired subsequent DNA-PKcs recruitment to the Ku complex at DSB sites and was rescued by restoring PARylation. These findings unprecedentedly reveal a novel role of FSP1 in DNA damage repair and provide new insights into how to sensitize OC patients to PARPi treatment.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Phthalazines , Piperazines , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Animals , Mice , Ferroptosis/drug effects , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Proliferation/drug effects , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics
6.
Int J Biochem Cell Biol ; 169: 106551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360265

ABSTRACT

Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/ß-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.


Subject(s)
Prostate , Prostatic Hyperplasia , S100 Calcium-Binding Protein A4 , Aged , Animals , Humans , Male , Rats , Apoptosis , Cell Proliferation , Fibrosis , Prostate/metabolism , Prostatic Hyperplasia/metabolism , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
7.
Emerg Microbes Infect ; 13(1): 2300466, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38164719

ABSTRACT

During its global epidemic, Zika virus (ZIKV) attracted widespread attention due to its link with various severe neurological symptoms and potential harm to male fertility. However, the understanding of how ZIKV invades and persists in the male reproductive system is limited due to the lack of immunocompetent small animal models. In this study, immunocompetent murine models were generated by using anti-IFNAR antibody blocked C57BL/6 male mice and human STAT2 (hSTAT2) knock in (KI) male mice. After infection, viral RNA could persist in the testes even after the disappearance of viremia. We also found a population of ZIKV-susceptible S100A4+ monocytes/macrophages that were recruited into testes from peripheral blood and played a crucial role for ZIKV infection in the testis. By using single-cell RNA sequencing, we also proved that S100A4+ monocytes/macrophages had a great impact on the microenvironment of ZIKV-infected testes, thus promoting ZIKV-induced testicular lesions. In conclusion, this study proposed a novel mechanism of long-term ZIKV infection in the male reproductive system.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Zika Virus/genetics , Testis , Monocytes , Mice, Inbred C57BL , Macrophages , Disease Models, Animal , S100 Calcium-Binding Protein A4
8.
Nat Rev Rheumatol ; 20(2): 67, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212540
9.
Int Immunopharmacol ; 128: 111555, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280333

ABSTRACT

S100A4 is implicated in metabolic reprogramming across various cell types and is known to propel the progression of numerous diseases including allergies. Nonetheless, the influence of S100A4 on mast cell metabolic reprogramming during allergic disorders remains unexplored. Utilizing a mast cell line (C57), cells were treated with recombinant mouse S100A4 protein, with or without a PPAR-γ agonist (ROSI) or a RAGE inhibitor (FPS-ZM1). Subsequent assessments were conducted for mast cell activation and lipid metabolism. S100A4 induced mast cell activation and the release of inflammatory mediators, concurrently altering molecules involved in lipid metabolism and glycolysis over time. Furthermore, S100A4 stimulation resulted in cellular oxidative stress and mitochondrial dysfunction. Alterations in the levels of pivotal molecules within the RAGE/Src/JAK2/STAT3/PPAR-γ and NF-κB signaling pathways were noted during this stimulation, which were partially counteracted by ROSI or FPS-ZMI. Additionally, a trend of metabolic alterations was identified in patients with allergic asthma who exhibited elevated serum S100A4 levels. Correlation analysis unveiled a positive association between serum S100A4 and serum IgE, implying an indirect association with asthma. Collectively, our findings suggest that S100A4 regulates the lipid-metabolic reprogramming of mast cells, potentially via the RAGE and PPAR-γ-involved signaling pathway, offering a novel perspective in the disease management in patients with allergic disorders.


Subject(s)
Asthma , Mast Cells , Animals , Mice , Humans , S100 Calcium-Binding Protein A4/metabolism , Mast Cells/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Lipid Metabolism , Signal Transduction , Asthma/metabolism
10.
Int J Biol Sci ; 20(1): 29-46, 2024.
Article in English | MEDLINE | ID: mdl-38164183

ABSTRACT

Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.


Subject(s)
Aortic Dissection , Dissection, Thoracic Aorta , Male , Humans , Mice , Animals , Aortic Dissection/genetics , Aorta , Extracellular Matrix , S100 Calcium-Binding Protein A4/genetics
11.
Rheumatology (Oxford) ; 63(3): 817-825, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37314987

ABSTRACT

OBJECTIVES: Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS: The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS: Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-ß/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION: Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.


Subject(s)
Alarmins , Skin , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Bleomycin/toxicity , Disease Models, Animal , S100 Calcium-Binding Protein A4/genetics , Skin/pathology , Fibrosis
12.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072048

ABSTRACT

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mechanotransduction, Cellular , Myofibroblasts , S100 Calcium-Binding Protein A4 , Animals , Mice , Cell Transdifferentiation , Fibrosis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
13.
ESC Heart Fail ; 11(1): 503-512, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083998

ABSTRACT

AIMS: Circulating biomarkers can provide important information for the diagnosis and prognosis of dilated cardiomyopathy (DCM). We explored novel biomarkers for the diagnosis and prognosis of DCM to improve clinical decision-making. METHODS AND RESULTS: A total of 238 DCM patients and 65 control were consecutively enrolled at Zhongshan Hospital between January 2017 and January 2019. In the screening set, four DCM patients and four controls underwent measurements of serum proteomic analysis. Seventy-six differentially expressed circulating proteins were screened by data-independent acquisition proteomics, and three of these proteins (S100A4, S100A8/A9, and S100A12) were validated by multiple-reaction monitoring-mass spectrometry. In the validation set, subsequently, a total of 234 DCM patients and 61 control subjects were evaluated by enzyme-linked immunosorbent assay. Circulating S100A4, S100A8/A9, and S100A12 were significantly increased in DCM patients (P < 0.001). These three proteins were significant positively correlated with other parameters, such as Lg (NT-proBNP), IL-1ß, TGF-ß, CRP, left ventricular end-diastolic diameter, and left ventricular end-systolic diameter, whereas they were negatively correlated with left ventricular ejection fraction, respectively (P < 0.05). The receiver operator characteristic curve showed the combination of S100A4, S100A8/A9, and S100A12 [area under curve (AUC) 0.88, 95% confidence interval (CI) 0.84-0.93] was better than single S100A4 (AUC 0.74, 95% CI 0.68-0.81), S100A8/A9 (AUC 0.82, 95% CI 0.77-0.88), or S100A12 (AUC 0.80, 95% CI 0.72-0.88) in the diagnosis of DCM (P < 0.01). After a median follow-up period of 33.5 months, 110 patients (47.01%) experienced major adverse cardiac events (MACEs), including 46 who had cardiac deaths and 64 who had heart failure rehospitalizations. Kaplan-Meier analysis indicated that the DCM patients with ≥75th percentile level of S100A4 had a significantly higher incidence of MACEs than those with <75th percentile level of S100A4 (61.40% vs. 42.37%, P < 0.05). There were no significant differences of MACE rate among DCM patients with different concentrations of S100A8/A9 and S100A12 (P > 0.05). Cox proportional hazards regression analysis revealed that S100A4 [≥75th percentile vs. <75th percentile: hazard ratio (HR) 1.65; 95% CI 1.11-2.45] remained significant independent predictors for MACEs (P < 0.05); however, S100A8/A9 and S100A12 were not independent factors for predicting MACE (P ≥ 0.05). CONCLUSIONS: S100A4, S100A8/A9, and S100A12 may be additional diagnostic tools for human DCM recognition, and the combination of these three indicators helped to improve the accuracy of a single index to diagnose DCM. Additionally, S100A4 was identified as a significant predictor of prognosis in patients with DCM.


Subject(s)
Cardiomyopathy, Dilated , S100A12 Protein , Humans , S100A12 Protein/metabolism , Pilot Projects , Calgranulin B , Stroke Volume , Cardiomyopathy, Dilated/diagnosis , Proteomics , Ventricular Function, Left , Calgranulin A , Prognosis , Biomarkers , S100 Calcium-Binding Protein A4
14.
Arthritis Rheumatol ; 76(5): 783-795, 2024 May.
Article in English | MEDLINE | ID: mdl-38108109

ABSTRACT

OBJECTIVE: S100A4 is a DAMP protein. S100A4 is overexpressed in patients with systemic sclerosis (SSc), and levels correlate with organ involvement and disease activity. S100A4-/- mice are protected from fibrosis. The aim of this study was to assess the antifibrotic effects of anti-S100A4 monoclonal antibody (mAb) in murine models of SSc and in precision cut skin slices of patients with SSc. METHODS: The effects of anti-S100A4 mAbs were evaluated in a bleomycin-induced skin fibrosis model and in Tsk-1 mice with a therapeutic dosing regimen. In addition, the effects of anti-S100A4 mAbs on precision cut SSc skin slices were analyzed by RNA sequencing. RESULTS: Inhibition of S100A4 was effective in the treatment of pre-established bleomycin-induced skin fibrosis and in regression of pre-established fibrosis with reduced dermal thickening, myofibroblast counts, and collagen accumulation. Transcriptional profiling demonstrated targeting of multiple profibrotic and proinflammatory processes relevant to the pathogenesis of SSc on targeted S100A4 inhibition in a bleomycin-induced skin fibrosis model. Moreover, targeted S100A4 inhibition also modulated inflammation- and fibrosis-relevant gene sets in precision cut SSc skin slices in an ex vivo trial approach. Selected downstream targets of S100A4, such as AMP-activated protein kinase, calsequestrin-1, and phosphorylated STAT3, were validated on the protein level, and STAT3 inhibition was shown to prevent the profibrotic effects of S100A4 on fibroblasts in human skin. CONCLUSION: Inhibition of S100A4 confers dual targeting of inflammatory and fibrotic pathways in complementary mouse models of fibrosis and in SSc skin. These effects support the further development of anti-S100A4 mAbs as disease-modifying targeted therapies for SSc.


Subject(s)
Antibodies, Monoclonal , Bleomycin , Disease Models, Animal , Fibrosis , S100 Calcium-Binding Protein A4 , Scleroderma, Systemic , Skin , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Animals , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Humans , Mice , Skin/pathology , Skin/drug effects , Skin/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , STAT3 Transcription Factor/metabolism , Female
15.
Sci Rep ; 13(1): 22540, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110482

ABSTRACT

Podocyte expression of fibroblast specific protein 1 (FSP1) is observed in various types of human glomerulonephritis. Considering that FSP1 is secreted extracellularly and has been shown to have multiple biological effects on distant cells, we postulated that secreted FSP1 from podocytes might impact renal tubules. Our RNA microarray analysis in a tubular epithelial cell line (mProx) revealed that FSP1 induced the expression of heme oxygenase 1, sequestosome 1, solute carrier family 7, member 11, and cystathionine gamma-lyase, all of which are associated with nuclear factor erythroid 2-related factor (Nrf2) activation. Therefore, FSP1 is likely to exert cytoprotective effects through Nrf2-induced antioxidant activity. Moreover, in mProx, FSP1 facilitated Nrf2 translocation to the nucleus, increased levels of reduced glutathione, inhibited the production of reactive oxygen species (ROS), and reduced cisplatin-induced cell death. FSP1 also ameliorated acute tubular injury in mice with cisplatin nephrotoxicity, which is a representative model of ROS-mediated tissue injury. Similarly, in transgenic mice that express FSP1 specifically in podocytes, tubular injury associated with cisplatin nephrotoxicity was also mitigated. Extracellular FSP1 secreted from podocytes acts on downstream tubular cells, exerting renoprotective effects through Nrf2-mediated antioxidant activity. Consequently, podocytes and tubular epithelial cells have a remote communication network to limit injury.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , S100 Calcium-Binding Protein A4/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cisplatin/pharmacology , Cisplatin/metabolism , Oxidative Stress , Heme Oxygenase-1/metabolism
16.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628889

ABSTRACT

Pyroptosis is a host immune strategy to defend against Mycobacterium tuberculosis (Mtb) infection. S100A4, a calcium-binding protein that plays an important role in promoting cancer progression as well as the pathophysiological development of various non-tumor diseases, has not been explored in Mtb-infected hosts. In this study, transcriptome analysis of the peripheral blood of patients with pulmonary tuberculosis (PTB) revealed that S100A4 and GSDMD were significantly up-regulated in PTB patients' peripheral blood. Furthermore, there was a positive correlation between the expression of GSDMD and S100A4. KEGG pathway enrichment analysis showed that differentially expressed genes between PTB patients and healthy controls were significantly related to inflammation, such as the NOD-like receptor signaling pathway and NF-κB signaling pathway. To investigate the regulatory effects of S100A4 on macrophage pyroptosis, THP-1 macrophages infected with Bacillus Calmette-Guérin (BCG) were pre-treated with exogenous S100A4, S100A4 inhibitor or si-S100A4. This research study has shown that S100A4 promotes the pyroptosis of THP-1 macrophages caused by BCG infection and activates NLRP3 inflammasome and NF-κB signaling pathways, which can be inhibited by knockdown or inhibition of S100A4. In addition, inhibition of NF-κB or NLRP3 blocks the promotion effect of S100A4 on BCG-induced pyroptosis of THP-1 macrophages. In conclusion, S100A4 activates the NF-κB/NLRP3 inflammasome signaling pathway to promote macrophage pyroptosis induced by Mtb infection. These data provide new insights into how S100A4 affects Mtb-induced macrophage pyroptosis.


Subject(s)
Mycobacterium bovis , Tuberculosis, Pulmonary , Humans , NF-kappa B , BCG Vaccine , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Signal Transduction , Macrophages , S100 Calcium-Binding Protein A4/genetics
17.
J Egypt Natl Canc Inst ; 35(1): 26, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37599312

ABSTRACT

AIMS: Both S100A4 and Glypican-3 have been known to be engaged in HCC development and progression. This study aimed to evaluate both S100A4 and GPC3 expression in HCC tissues as a prognostic markers. METHODS: Tissues from 70 patients of HCC in cirrhotic HCV patients were evaluated by immunohistochemistry using antibodies against SA100A4 and GPC3 and compared with tumor-adjacent tissue (controls). All cases were followed for 40 months. RESULTS: GPC3 was more expressed in HCC (79%) than S100A4 (21%). S100A4 was more significantly expressed in cases showing metastasis, microscopic vascular emboli, necrosis, and grade III tumors. There was no relationship between overall survival and both S100A4 and GPC3. The only significant independent predictor for recurrence was decompensation (OR 3.037), while metastasis was significantly predicted by S100A4 expression (OR 9.63) and necrosis (OR 8.33). CONCLUSION: S100A4 might be used as a prognostic marker for HCC, while GPC3 is a reliable marker of HCC diagnosis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Prognosis , Glypicans , Liver Neoplasms/diagnosis , Necrosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Hepatitis C/complications , S100 Calcium-Binding Protein A4/genetics
18.
Biomolecules ; 13(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37509135

ABSTRACT

Most patients who die of cancer do so from its metastasis to other organs. The calcium-binding protein S100A4 can induce cell migration/invasion and metastasis in experimental animals and is overexpressed in most human metastatic cancers. Here, we report that a novel inhibitor of S100A4 can specifically block its increase in cell migration in rat (IC50, 46 µM) and human (56 µM) triple negative breast cancer (TNBC) cells without affecting Western-blotted levels of S100A4. The moderately-weak S100A4-inhibitory compound, US-10113 has been chemically attached to thalidomide to stimulate the proteasomal machinery of a cell. This proteolysis targeting chimera (PROTAC) RGC specifically eliminates S100A4 in the rat (IC50, 8 nM) and human TNBC (IC50, 3.2 nM) cell lines with a near 20,000-fold increase in efficiency over US-10113 at inhibiting cell migration (IC50, 1.6 nM and 3.5 nM, respectively). Knockdown of S100A4 in human TNBC cells abolishes this effect. When PROTAC RGC is injected with mouse TNBC cells into syngeneic Balb/c mice, the incidence of experimental lung metastases or local primary tumour invasion and spontaneous lung metastasis is reduced in the 10-100 nM concentration range (Fisher's Exact test, p ≤ 0.024). In conclusion, we have established proof of principle that destructive targeting of S100A4 provides the first realistic chemotherapeutic approach to selectively inhibiting metastasis.


Subject(s)
S100 Calcium-Binding Protein A4 , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Rats , Cell Line, Tumor , Cell Movement , Neoplasm Invasiveness , Neoplasm Metastasis , S100 Calcium-Binding Protein A4/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Proteolysis Targeting Chimera/metabolism , Proteolysis Targeting Chimera/pharmacology
19.
Cell Death Dis ; 14(7): 395, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37400459

ABSTRACT

Lung metastasis is the leading cause of breast cancer-related death. The tumor microenvironment contributes to the metastatic colonization of tumor cells in the lungs. Tumor secretory factors are important mediators for the adaptation of cancer cells to foreign microenvironments. Here, we report that tumor-secreted stanniocalcin 1 (STC1) promotes the pulmonary metastasis of breast cancer by enhancing the invasiveness of tumor cells and promoting angiogenesis and lung fibroblast activation in the metastatic microenvironment. The results show that STC1 modifies the metastatic microenvironment through its autocrine action on breast cancer cells. Specifically, STC1 upregulates the expression of S100 calcium-binding protein A4 (S100A4) by facilitating the phosphorylation of EGFR and ERK signaling in breast cancer cells. S100A4 mediates the effect of STC1 on angiogenesis and lung fibroblasts. Importantly, S100A4 knockdown diminishes STC1-induced lung metastasis of breast cancer. Moreover, activated JNK signaling upregulates STC1 expression in breast cancer cells with lung-tropism. Overall, our findings reveal that STC1 plays important role in breast cancer lung metastasis.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Glycoproteins/genetics , Glycoproteins/metabolism , Lung Neoplasms/pathology , S100 Calcium-Binding Protein A4/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Line, Tumor , Neoplasm Metastasis , Tumor Microenvironment
20.
Discov Med ; 35(176): 251-263, 2023 06.
Article in English | MEDLINE | ID: mdl-37272092

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are characterized by an ability for unlimited proliferation and efficiency of self-renewal. The targeting of lung CSCs (LCSCs)-related signaling pathways represent a promising therapeutic strategy for treatment of lung cancer. Ferroptosis a potential strategy for LCSCs treatment, and curcumin cloud induce ferroptosis. In this study, we aimed to observe the effects of curcumin on LCSCs via ferroptosis-related pathways. METHODS: In this study, A549 cluster of differentiation (CD)133+ and A549 CD133- cells were isolated using magnetic bead-based separation. Colony formation and sphere formation assays, as well as cells injection in non-obese diabetes/severe combined immune deficiency (NOD/SCID) mice, were used to analyze the tumorigenic ability of cells differentially expressing CD133. A549 CD133+ cells were treated with different doses of curcumin (0, 10, 20, 40, 80 µM). Cell viability, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) expressions were measured. The 50% inhibitory concentration (IC50) of curcumin, two ferroptosis inducers, inhibitor of GPX4 (RSL3) and inhibitor of FSP1 (iFSP1), and a ferroptosis inhibitor, ferrostatin-1 (Fer-1), were used to investigate the mechanism underlying the effect of curcumin on ferroptosis in A549 CD133+ cells. RESULTS: A549 CD133+ cells had greater tumorigenic ability than A549 cells. Curcumin treatment suppressed the expressions of GPX4 (glutathione peroxidase 4) and FSP1 in A549 CD133+ cells, thereby inducing ferroptosis. RSL3 and iFSP1 respectively suppressed the GSH (glutathione)-GPX4 and FSP1 (ferroptosis suppressor protein 1)-CoQ10 (coenzyme Q10)-nicotinamide adenine dinucleotide (NADH) pathways in A549 CD133+ cells. However, the roles of curcumin were blocked by Fer-1 treatment. CONCLUSIONS: In this study, curcumin induced ferroptosis through inhibiting the GSH-GPX4 and FSP1-CoQ10-NADH pathways in A549 CD133+ cells, resulting in the inhibition of their self-renewal potential.


Subject(s)
Antineoplastic Agents , Curcumin , Ferroptosis , Lung , Neoplastic Stem Cells , Humans , Animals , Mice , A549 Cells , Mice, SCID , Mice, Inbred NOD , Curcumin/administration & dosage , Signal Transduction , Ferroptosis/drug effects , Antineoplastic Agents/administration & dosage , S100 Calcium-Binding Protein A4/metabolism , Glutathione Peroxidase/metabolism , Neoplastic Stem Cells/drug effects , Lung/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...